10 research outputs found

    A hierarchy of effective teaching and learning to acquire competence in evidenced-based medicine

    Get PDF
    BACKGROUND: A variety of methods exists for teaching and learning evidence-based medicine (EBM). However, there is much debate about the effectiveness of various EBM teaching and learning activities, resulting in a lack of consensus as to what methods constitute the best educational practice. There is a need for a clear hierarchy of educational activities to effectively impart and acquire competence in EBM skills. This paper develops such a hierarchy based on current empirical and theoretical evidence. DISCUSSION: EBM requires that health care decisions be based on the best available valid and relevant evidence. To achieve this, teachers delivering EBM curricula need to inculcate amongst learners the skills to gain, assess, apply, integrate and communicate new knowledge in clinical decision-making. Empirical and theoretical evidence suggests that there is a hierarchy of teaching and learning activities in terms of their educational effectiveness: Level 1, interactive and clinically integrated activities; Level 2(a), interactive but classroom based activities; Level 2(b), didactic but clinically integrated activities; and Level 3, didactic, classroom or standalone teaching. SUMMARY: All health care professionals need to understand and implement the principles of EBM to improve care of their patients. Interactive and clinically integrated teaching and learning activities provide the basis for the best educational practice in this field

    Authors' reply

    No full text

    Cancer metabolism : a therapeutic perspective

    No full text
    Awareness that the metabolic phenotype of cells within tumours is heterogeneous — and distinct from that of their normal counterparts — is growing. In general, tumour cells metabolize glucose, lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than their nontumour equivalents; however, the metabolic ecology of tumours is complex because they contain multiple metabolic compartments, which are linked by the transfer of these catabolites. This metabolic variability and flexibility enables tumour cells to generate ATP as an energy source, while maintaining the reduction–oxidation (redox) balance and committing resources to biosynthesis — processes that are essential for cell survival, growth, and proliferation. Importantly, experimental evidence indicates that metabolic coupling between cell populations with different, complementary metabolic profiles can induce cancer progression. Thus, targeting the metabolic differences between tumour and normal cells holds promise as a novel anticancer strategy. In this Review, we discuss how cancer cells reprogramme their metabolism and that of other cells within the tumour microenvironment in order to survive and propagate, thus driving disease progression; in particular, we highlight potential metabolic vulnerabilities that might be targeted therapeutically

    Influence of intranasal exposure of MPTP in multiple doses on liver functions and transition from non-motor to motor symptoms in a rat PD model

    No full text

    Micronucleus Assays

    No full text
    corecore