8 research outputs found

    Conditions of emergence of the Sooty Bark Disease and aerobiology of Cryptostroma corticale in Europe

    Get PDF
    The sooty bark disease (SBD) is an emerging disease affecting sycamore maple trees (Acer pseudoplatanus) in Europe. Cryptostroma corticale, the causal agent, putatively native to eastern North America, can be also pathogenic for humans causing pneumonitis. It was first detected in 1945 in Europe, with markedly increasing reports since 2000. Pathogen development appears to be linked to heat waves and drought episodes. Here, we analyse the conditions of the SBD emergence in Europe based on a three-decadal time -series data set. We also assess the suitability of aerobiological samples using a species-specific quantitative PCR assay to inform the epidemiology of C. corticale, through a regional study in France comparing two-year aerobiological and epidemiological data, and a continental study including 12 air samplers from six countries (Czechia, France, Italy, Portugal, Sweden and Switzerland). We found that an accumulated water deficit in spring and summer lower than-132 mm correlates with SBD outbreaks. Our results suggest that C. corticale is an efficient airborne pathogen which can dis-perse its conidia as far as 310 km from the site of the closest disease outbreak. Aerobiology of C. corticale followed the SBD distribution in Europe. Pathogen detection was high in countries within the host native area and with longer disease presence, such as France, Switzerland and Czech Republic, and sporadic in Italy, where the pathogen was reported just once. The pathogen was absent in samples from Portugal and Sweden, where the disease has not been reported yet. We conclude that aerobiological surveillance can inform the spatial distribution of the SBD, and contribute to early detection in pathogen-free countries

    Worldwide tests of generic attractants, a promising tool for early detection of non-native cerambycid species

    Get PDF
    A large proportion of the insects which have invaded new regions and countries are emerging species, being found for the first time outside their native range. Being able to detect such species upon arrival at ports of entry before they establish in non-native countries is an urgent challenge. The deployment of traps baited with broad-spectrum semiochemical lures at ports-of-entry and other high-risk sites could be one such early detection tool. Rapid progress in the identification of semiochemicals for cerambycid beetles during the last 15 years has revealed that aggregation-sex pheromones and sex pheromones are often conserved at global levels for genera, tribes or subfamilies of the Cerambycidae. This possibly allows the development of generic attractants which attract multiple species simultaneously, especially when such pheromones are combined into blends. Here, we present the results of a worldwide field trial programme conducted during 2018-2021, using traps baited with a standardised 8-pheromone blend, usually com-plemented with plant volatiles. A total of 1308 traps were deployed at 302 sites covering simultaneously or sequentially 13 European countries, 10 Chinese provinces and some regions of the USA, Canada, Australia, Russia (Siberia) and the Caribbean (Martinique). We intended to test the following hypotheses: 1) if a species is regularly trapped in significant numbers by the blend on a continent, it increases the prob-ability that it can be detected when it arrives in other countries/continents and 2) if the blend exerts an effective, generic attraction to multiple species, it is likely that previously unknown and unexpected spe-cies can be captured due to the high degree of conservation of pheromone structures within related taxa. A total of 78,321 longhorned beetles were trapped, representing 376 species from eight subfamilies, with 84 species captured in numbers greater than 50 individuals. Captures comprised 60 tribes, with 10 tribes including more than nine species trapped on different continents. Some invasive species were captured in both the native and invaded continents. This demonstrates the potential of multipheromone lures as ef-fective tools for the detection of 'unexpected' cerambycid invaders, accidentally translocated outside their native ranges. Adding new pheromones with analogous well-conserved motifs is discussed, as well as the limitations of using such blends, especially for some cerambycid taxa which may be more attracted by the trap colour or other characteristics rather than to the chemical blend

    Detection of Airborne Inoculum of Hymenoscyphus fraxineus and H. albidus during Seasonal Fluctuations Associated with Absence of Apothecia

    No full text
    Hymenoscyphus fraxineus is an invasive fungal species causing the most serious disease of ashes (Fraxinus spp.) in Europe—ash dieback. The biology of this fungus is not totally elucidated, neither its relation to the saprophytic species Hymenoscyphus albidus, native in Europe. Our study is focused on the description of seasonal spore dispersal of both fungi and its relation to meteorological conditions, which is needed for more precise and effective control of the disease. For this experiment one long time infected mixed forest in the SE Czech Republic was chosen. A seven-day automatic volumetric spore trap and a weather station were installed to continuously sample the aerospora from April to October 2014. In seven periods a rotating arm spore trap was also used to obtain 48-h air samples to compare the efficiency of these two types of air samplers. Air samples were evaluated solely by qPCR with a very low detection limit. Results show co-occurrence of inoculum of both fungi throughout the entire sampling period with peak levels in August. The origin of the inoculum sampled in the periods without apothecia is discussed. Air-inoculum occurrence of both fungi is significantly correlated with each other, suggesting their coexistence in this forest

    Mechanisms of allergic contact dermatitis

    No full text
    Allergenicity depends on several factors determined by the very physicochemical nature of the molecules themselves, i.e., their capacity to penetrate the horny layer, lipophilicity, and chemical reactivity. The sensitizing property of the majority of contact allergens could be predicted from these characteristics (Patlewicz et al., Contact Dermatitis 50:91-97, 2004; Gerberick et al., Altern Lab Anim 36(2):215-242, 2008). Two other factors, however, further contribute to the allergenicity of chemicals, namely, their pro-inflammatory activity and capacity to induce maturation of LC. These issues will be dealt with in more detail in the following sections. Along with their migration and settling within the draining lymph nodes, haptenized LC further mature, as characterized by their increased expression of costimulatory and antigen-presentation molecules (Cumberbatch et al., Arch Dermatol Res 289:277-284, 1997; Heufler et al. J Exp Med 167:700-705, 1988). In addition, they adopt a strongly veiled, interdigitating appearance, thus maximizing the chances of productive encounters with naive T lymphocytes and recognition of altered self (Steinman et al., J Invest Dermatol 105:2S-7S, 1995; Furue et al., Br J Dermatol 135:194-198, 1996; Schuler and Steinman, J Exp Med 161:526-546, 1985). The intricate structure of lymph node paracortical areas, the differential expression of chemokines and their receptors, the characteristic membrane ruffling of IDC, and the predominant circulation of naive T lymphocytes through these lymph node areas provide optimal conditions for T-cell-receptor binding, i.e., the first signal for induction of T-cell activation (Banchereau and Steinman, Nature 392:245-252, 1998). Intimate DC-T-cell contacts are further strengthened by secondary signals, provided by sets of cellular adhesion molecules, and growth-promoting cytokines (reviewed in Hommel, Immunol Cell Biol 82:62-66, 2004; Cella et al., Curr Opin Immunol 9:10-16, 1997). In healthy individuals, primary skin contacts with contact allergens lead to differentiation and expansion of allergen-specific effector T cells displaying Th1, Th2, and/or Th17 cytokine profiles. The same allergens, if encountered along mucosal surfaces, favor the development of allergen-specific Th2 and Th17 effector cells, and/or Th3 and Tr1 allergen-specific regulatory T cells. Whereas the first two subsets may assist or replace Th1 cells in pro-inflammatory effector functions, the latter two subsets are mainly known for downregulating immune responsiveness. For most, if not all allergens, along with prolonged allergenic contacts, the role of Th2 cells as effector cells gradually increases given reduced longevity of Th1 responses. The respective contributions of similar subsets of allergen-specific CD8 + T cells are still unknown, but distinct effector roles of allergen-specific Tc1 and Tc2 have been postulated. Priming via the skin results in CLA positive T cells, which upon inflammatory stimuli preferentially enter the skin; on the other hand, gut homing T cells have been primed and generated along mucosal surfaces. Upon priming, T cells loose much of their capacity to recirculate via the lymph nodes, but gain the capacity to enter the tissues. In particular recently activated T cells will enter skin inflammatory sites. ACD reactions are primarily infiltrated by CD4 and/or CD8 pro-inflammatory cells, later reactions may be dominated by Th2 cells and regulatory T cells. Skin infiltation by T cells is fine-tuned by sets of adhesion molecules and chemokine receptors, whose expression is not rigid, but can be modulated by micro-environmental factors. After antigenic activation the progeny of primed T cells is released via the efferent lymphatics into the bloodstream. Circulating allergen-specific cells can be challenged in vitro to provide diagnostic parameters for contact hypersensitivity. At least for water-soluble allergens, like metal salts, the degree of allergen-specific proliferation and cytokine production, in particular type-2 cytokines, correlate with clinical allergy. For routine application of a broad spectrum of allergens, culture conditions still need to be improved. For mechanistic in vitro studies in ACD, however, with selected sets of relatively nontoxic allergens, peripheral blood provides an excellent source of lymphocytes and antigen-presenting cells. ACD reactions can be mediated by classical effector cells, i.e., allergen-specific CD4+ type-1 T cells which, upon triggering by allergen-presenting cells, produce IFN-? to activate nonspecific inflammatory cells like macrophages. However, CD8 + T cells, and other cytokines, including IL-4, IL-17, and IL-22 can also play major roles in ACD. The conspicuous difference with DTH reactions induced by intradermal administration of protein antigens, i.e., the epidermal infiltrate, can largely be attributed to hapten-induced chemokine release by keratinocytes

    Mechanisms of Irritant and Allergic Contact Dermatitis

    No full text
    corecore