8 research outputs found

    Modelling the expected probability of correct assignment under uncertainty

    No full text
    When making important decisions such as choosing health insurance or a school, people are often uncertain what levels of attributes will suit their true preference. After choice, they might realize that their uncertainty resulted in a mismatch: choosing a sub-optimal alternative, while another available alternative better matches their needs. We study here the overall impact, from a central planner’s perspective, of decisions under such uncertainty. We use the representation of Voronoi tessellations to locate all individuals and alternatives in an attribute space. We provide an expression for the probability of correct match, and calculate, analytically and numerically, the average percentage of matches. We test dependence on the level of uncertainty and location. We find that the overall mismatch is considerable even for low uncertainty—a possible concern for policy makers. We further explore a commonly used practice—allocating service representatives to assist individuals’ decisions. We show that within a given budget and uncertainty level, the effective allocation is for individuals who are close to the boundary between several Voronoi cells, but are not right on the boundary.QRD/Kouwenhoven LabQuTec

    Tunable Superconducting Coupling of Quantum Dots via Andreev Bound States in Semiconductor-Superconductor Nanowires

    No full text
    Semiconductor quantum dots have proven to be a useful platform for quantum simulation in the solid state. However, implementing a superconducting coupling between quantum dots mediated by a Cooper pair has so far suffered from limited tunability and strong suppression. This has limited applications such as Cooper pair splitting and quantum dot simulation of topological Kitaev chains. In this Letter, we propose how to mediate tunable effective couplings via Andreev bound states in a semiconductor-superconductor nanowire connecting two quantum dots. We show that in this way it is possible to individually control both the coupling mediated by Cooper pairs and by single electrons by changing the properties of the Andreev bound states with easily accessible experimental parameters. In addition, the problem of coupling suppression is greatly mitigated. We also propose how to experimentally extract the coupling strengths from resonant current in a three-terminal junction. Our proposal will enable future experiments that have not been possible so far. QRD/Wimmer GroupQRD/Kouwenhoven LabQN/Wimmer Grou

    Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic fields: Triplet superconductivity and Ising protection

    No full text
    In conventional Bardeen-Cooper-Schrieffer superconductors, Cooper pairs of electrons of opposite spin (i.e., singlet structure) form the ground state. Equal-spin triplet pairs (ESTPs), as in superfluid He3, are of great interest for superconducting spintronics and topological superconductivity, yet remain elusive. Recently, odd-parity ESTPs were predicted to arise in (few-)monolayer superconducting NbSe2, from the noncollinearity between the out-of-plane Ising spin-orbit field (due to the lack of inversion symmetry in monolayer NbSe2) and an applied in-plane magnetic field. These ESTPs couple to the singlet order parameter at finite field. Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2 flakes, of 2-25 monolayer thickness, measuring the quasiparticle density of states (DOS) as a function of applied in-plane magnetic field up to 33 T. In flakes ≲15 monolayers thick the DOS has a single superconducting gap. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by the Ising field. The superconducting energy gap, extracted from our tunneling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2, close to the critical field (up to 30 T, much larger than the Pauli limit), superconductivity appears to be more robust than expected from Ising protection alone. Our data can be explained by the above-mentioned ESTPs. QRD/Kouwenhoven La

    Nonlocal measurement of quasiparticle charge and energy relaxation in proximitized semiconductor nanowires using quantum dots

    No full text
    The lowest-energy excitations of superconductors do not carry an electric charge, as their wave function is equally electron-like and hole-like. This fundamental property is not easy to study in electrical measurements that rely on the charge to generate an observable signal. The ability of a quantum dot to act as a charge filter enables us to solve this problem and measure the quasiparticle charge in superconducting-semiconducting hybrid nanowire heterostructures. We report measurements on a three-terminal circuit, in which an injection lead excites a nonequilibrium quasiparticle distribution in the hybrid system, and the electron or hole component of the resulting quasiparticles is detected using a quantum dot as a tunable charge and energy filter. The results verify the chargeless nature of the quasiparticles at the gap edge and reveal the complete relaxation of injected charge and energy in a proximitized nanowire, resolving open questions in previous three-terminal experiments.QRD/Kouwenhoven LabQuTec

    Spin-filtered measurements of Andreev bound states in semiconductor-superconductor nanowire devices

    No full text
    Semiconductor nanowires coupled to superconductors can host Andreev bound states with distinct spin and parity, including a spin-zero state with an even number of electrons and a spin-1/2 state with odd-parity. Considering the difference in spin of the even and odd states, spin-filtered measurements can reveal the underlying ground state. To directly measure the spin of single-electron excitations, we probe an Andreev bound state using a spin-polarized quantum dot that acts as a bipolar spin filter, in combination with a non-polarized tunnel junction in a three-terminal circuit. We observe a spin-polarized excitation spectrum of the Andreev bound state, which can be fully spin-polarized, despite strong spin-orbit interaction in the InSb nanowires. Decoupling the hybrid from the normal lead causes a current blockade, by trapping the Andreev bound state in an excited state. Spin-polarized spectroscopy of hybrid nanowire devices, as demonstrated here, is proposed as an experimental tool to support the observation of topological superconductivity.QRD/Kouwenhoven LabQRD/Wimmer GroupBUS/Quantum DelftQN/Kouwenhoven La

    Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires

    No full text
    In most naturally occurring superconductors, electrons with opposite spins form Cooper pairs. This includes both conventional s-wave superconductors such as aluminium, as well as high-transition-temperature, d-wave superconductors. Materials with intrinsic p-wave superconductivity, hosting Cooper pairs made of equal-spin electrons, have not been conclusively identified, nor synthesized, despite promising progress1–3. Instead, engineered platforms where s-wave superconductors are brought into contact with magnetic materials have shown convincing signatures of equal-spin pairing4–6. Here we directly measure equal-spin pairing between spin-polarized quantum dots. This pairing is proximity-induced from an s-wave superconductor into a semiconducting nanowire with strong spin–orbit interaction. We demonstrate such pairing by showing that breaking a Cooper pair can result in two electrons with equal spin polarization. Our results demonstrate controllable detection of singlet and triplet pairing between the quantum dots. Achieving such triplet pairing in a sequence of quantum dots will be required for realizing an artificial Kitaev chain7–9.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QRD/Kouwenhoven LabBUS/Quantum DelftArchitecture and the Built EnvironmentQRD/Goswami LabQN/Wimmer GroupQN/Kouwenhoven La

    Tunable Crossed Andreev Reflection and Elastic Cotunneling in Hybrid Nanowires

    No full text
    A short superconducting segment can couple attached quantum dots via elastic cotunneling (ECT) and crossed Andreev reflection (CAR). Such coupled quantum dots can host Majorana bound states provided that the ratio between CAR and ECT can be controlled. Metallic superconductors have so far been shown to mediate such tunneling phenomena, albeit with limited tunability. Here, we show that Andreev bound states formed in semiconductor-superconductor heterostructures can mediate CAR and ECT over mesoscopic length scales. Andreev bound states possess both an electron and a hole component, giving rise to an intricate interference phenomenon that allows us to tune the ratio between CAR and ECT deterministically. We further show that the combination of intrinsic spin-orbit coupling in InSb nanowires and an applied magnetic field provides another efficient knob to tune the ratio between ECT and CAR and optimize the amount of coupling between neighboring quantum dots.QRD/Kouwenhoven LabQRD/Wimmer GroupQRD/Goswami LabBUS/Quantum DelftQN/Wimmer GroupQN/Kouwenhoven LabQubit Research Divisio

    Realization of a minimal Kitaev chain in coupled quantum dots

    No full text
    Majorana bound states constitute one of the simplest examples of emergent non-Abelian excitations in condensed matter physics. A toy model proposed by Kitaev shows that such states can arise at the ends of a spinless p-wave superconducting chain1. Practical proposals for its realization2,3 require coupling neighbouring quantum dots (QDs) in a chain through both electron tunnelling and crossed Andreev reflection4. Although both processes have been observed in semiconducting nanowires and carbon nanotubes5–8, crossed-Andreev interaction was neither easily tunable nor strong enough to induce coherent hybridization of dot states. Here we demonstrate the simultaneous presence of all necessary ingredients for an artificial Kitaev chain: two spin-polarized QDs in an InSb nanowire strongly coupled by both elastic co-tunnelling (ECT) and crossed Andreev reflection (CAR). We fine-tune this system to a sweet spot where a pair of poor man’s Majorana states is predicted to appear. At this sweet spot, the transport characteristics satisfy the theoretical predictions for such a system, including pairwise correlation, zero charge and stability against local perturbations. Although the simple system presented here can be scaled to simulate a full Kitaev chain with an emergent topological order, it can also be used imminently to explore relevant physics related to non-Abelian anyons.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.QRD/Kouwenhoven LabQRD/Wimmer GroupBUS/Quantum DelftCommunication QuTechQRD/Goswami LabApplied SciencesBUS/TNO STAFFQN/Wimmer GroupQN/Kouwenhoven La
    corecore