3 research outputs found

    Photogrammetric Survey in Volcanology: A Case Study for Kamchatka Active Volcanoes

    Get PDF
    The photogrammetric method has been used to study active volcanoes in Kamchatka for more than 100 years. It is still the most effective method for consistently monitoring short-term changes in the morphology of volcanic structures and for obtaining accurate parameters of eruptions. This chapter shows the specific features of photogrammetry application in volcanological research and development of this method in the context of investigating Kamchatkan volcanoes. We also present the results of the study of volcanic objects with various morphologies, composition, and types of activity with regard to the specific features of the 2001–2012 growth of the dome at Molodoy Shiveluch Volcano, the effects of the 1975–1976 Great Tolbachik Fissure Eruption and of the 2012–2013 Tolbachik Fissure Eruption, the morphodynamics of Troitsky Crater on Maly Semyachik Volcano, and the morphological changes of Akademii Nauk Caldera after the catastrophic 1996 eruption. The chapter shows the way forward for the development of the photogrammetric method in volcanology

    Constructive and Destructive Processes During the 2018–2019 Eruption Episode at Shiveluch Volcano, Kamchatka, Studied From Satellite and Aerial Data

    Get PDF
    Dome-building volcanoes often develop by intrusion and extrusion, recurrent destabilization and sector collapses, and renewed volcanic growth inside the collapse embayment. However, details of the structural architecture affiliated with renewed volcanic activity and the influences of regional structures remain poorly understood. Here, we analyze the recent activity of Shiveluch volcano, Kamchatka Peninsula, characterized by repeated episodes of lava dome growth and destruction due to large explosions and gravity-driven collapses. We collect and process a multisensor dataset comprising high-resolution optical (aerial and tri-stereo Pleiades satellite), radar (TerraSAR-X and TanDEM-X satellites), and thermal (aerial and MODIS, Sentinel-2, and Landsat 8 satellites) data. We investigate the evolution of the 2018–2019 eruption episode and evaluate the morphological and structural changes that led to the August 29, 2019 explosive eruption and partial dome collapse. Our results show that a new massive lava lobe gradually extruded onto the SW flank of the dome, concurrent with magmatic intrusion into the eastern dome sector, adding 0.15 km3 to the lava dome complex. As the amphitheater infilled, new eruption craters emerged along a SW-NE alignment close to the amphitheater rim. Then, the large August 29, 2019 explosive eruption occurred, followed by partial dome collapse, which was initially directed away from this SW-NE trend. The eruption and collapse removed 0.11 km3 of the dome edifice and led to the formation of a new central SW-NE-elongated crater with dimensions of 430 m × 490 m, a collapse scar at the eastern part of the dome, and pyroclastic density currents that traveled ∼12 km downslope. This work sheds light on the structural architecture dominated by a SW-NE lineament and the complex interplay of volcano constructive and destructive processes. We develop a conceptual model emphasizing the relevance of structural trends, namely, 1) a SW-NE-oriented (possibly regional) structure and 2) the infilled amphitheater and its decollement surface, both of which are vital for understanding the directions of growth and collapse and for assessing the potential hazards at both Shiveluch and dome-building volcanoes elsewhere

    Evolution of the crater lake of Maly Semyachik volcano, Kamchatka (1965–2020)

    No full text
    Significant variations in temperature, water chemistry and volume of the lake in the crater of Maly Semyachik volcano, Kamchatka, in 1965–2020 can be divided in three main stages. The first stage, until about the mid-1980s, was characterized by intense volcanic-hydrothermal activity, high (above 40 °C) temperature, high salinity (up to 40 g/l) and an increase in the level (and volume) of the lake. During the second stage, which lasted 25–30 years, since the mid-1980s until the mid-2000s, the lake cooled down, until freezing in winter, the mineralization decreased (up to 1.6 g/l), and the volume of the lake remained almost constant. After the mid-2000s until present, there is a period of activation of the Maly Semyachik volcano, which is expressed in an increase in temperature, mineralization and a sharp increase in the volume of the crater lake. The water balance of the lake and the input and composition of the thermal acid chloride solution are estimated based on the analysis of changes in chemical and physical parameters over time, using a box model
    corecore