38 research outputs found

    Variations of X Chromosome Inactivation Occur in Early Passages of Female Human Embryonic Stem Cells

    Get PDF
    X chromosome inactivation (XCI) is a dosage compensation mechanism essential for embryonic development and cell physiology. Human embryonic stem cells (hESCs) derived from inner cell mass (ICM) of blastocyst stage embryos have been used as a model system to understand XCI initiation and maintenance. Previous studies of undifferentiated female hESCs at intermediate passages have shown three possible states of XCI; 1) cells in a pre-XCI state, 2) cells that already exhibit XCI, or 3) cells that never undergo XCI even upon differentiation. In this study, XCI status was assayed in ten female hESC lines between passage 5 and 15 to determine whether XCI variations occur in early passages of hESCs. Our results show that three different states of XCI already exist in the early passages of hESC. In addition, we observe one cell line with skewed XCI and preferential expression of X-linked genes from the paternal allele, while another cell line exhibits random XCI. Skewed XCI in undifferentiated hESCs may be due to clonal selection in culture instead of non-random XCI in ICM cells. We also found that XIST promoter methylation is correlated with silencing of XIST transcripts in early passages of hESCs, even in the pre-XCI state. In conclusion, XCI variations already take place in early passages of hESCs, which may be a consequence of in vitro culture selection during the derivation process. Nevertheless, we cannot rule out the possibility that XCI variations in hESCs may reflect heterogeneous XCI states in ICM cells that stochastically give rise to hESCs

    Studying Early Lethality of 45,XO (Turner's Syndrome) Embryos Using Human Embryonic Stem Cells

    Get PDF
    Turner's syndrome (caused by monosomy of chromosome X) is one of the most common chromosomal abnormalities in females. Although 3% of all pregnancies start with XO embryos, 99% of these pregnancies terminate spontaneously during the first trimester. The common genetic explanation for the early lethality of monosomy X embryos, as well as the phenotype of surviving individuals is haploinsufficiency of pseudoautosomal genes on the X chromosome. Another possible mechanism is null expression of imprinted genes on the X chromosome due to the loss of the expressed allele. In contrast to humans, XO mice are viable, and fertile. Thus, neither cells from patients nor mouse models can be used in order to study the cause of early lethality in XO embryos. Human embryonic stem cells (HESCs) can differentiate in culture into cells from the three embryonic germ layers as well as into extraembryonic cells. These cells have been shown to have great value in modeling human developmental genetic disorders. In order to study the reasons for the early lethality of 45,XO embryos we have isolated HESCs that have spontaneously lost one of their sex chromosomes. To examine the possibility that imprinted genes on the X chromosome play a role in the phenotype of XO embryos, we have identified genes that were no longer expressed in the mutant cells. None of these genes showed a monoallelic expression in XX cells, implying that imprinting is not playing a major role in the phenotype of XO embryos. To suggest an explanation for the embryonic lethality caused by monosomy X, we have differentiated the XO HESCs in vitro an in vivo. DNA microarray analysis of the differentiated cells enabled us to compare the expression of tissue specific genes in XO and XX cells. The tissue that showed the most significant differences between the clones was the placenta. Many placental genes are expressed at much higher levels in XX cells in compare to XO cells. Thus, we suggest that abnormal placental differentiation as a result of haploinsufficiency of X-linked pseudoautosomal genes causes the early lethality in XO human embryos

    A Novel SALL4/OCT4 Transcriptional Feedback Network for Pluripotency of Embryonic Stem Cells

    Get PDF
    Background: SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell) pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members. Methodology/Principal Findings: This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the “break” for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4. Conclusions/Significance: Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the “stemness” of ES cells

    Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3

    Get PDF
    BACKGROUND: The transcription factor STAT3 is a downstream target of the LIF signalling cascade. LIF signalling or activation is sufficient to maintain embryonic stem (ES) cells in an undifferentiated and pluripotent state. To further investigate the importance of STAT3 in the establishment of ES cells we have in a first step derived stable pluripotent embryonic stem cells from transgenic FVB mice expressing a conditional tamoxifen dependent STAT3-MER fusion protein. In a second step, STAT3-MER overexpressing cells were used to identify STAT3 pathway-related genes by expression profiling in order to identify new key-players involved in maintenance of pluripotency in ES cells. RESULTS: Transgenic STAT3-MER blastocysts yielded pluripotent germline-competent ES cells at a high frequency in the absence of LIF when established in tamoxifen-containing medium. Expression profiling of tamoxifen-induced transgenic FVB ES cell lines revealed a set of 26 genes that were markedly up- or down-regulated when compared with wild type cells. The expression of four of the up-regulated genes (Hexokinase II, Lefty2, Pramel7, PP1rs15B) was shown to be restricted to the inner cell mass (ICM) of the blastocysts. These differentially expressed genes represent potential candidates for the maintenance of pluripotency of ES cells. We finally overexpressed two candidate genes, Pem/Rhox5 and Pramel7, in ES cells and demonstrated that their overexpression is sufficient for the maintenance of expression of ES cell markers as well as of the typical morphology of pluripotent ES cells in absence of LIF. CONCLUSION: Overexpression of STAT3-MER in the inner cell mass of blastocyst facilitates the establishment of ES cells and induces the upregulation of potential candidate genes involved in the maintenance of pluripotency. Two of them, Pem/Rhox5 and Pramel7, when overexpressed in ES cells are able to maintain the embryonic stem cells in a pluripotent state in a LIF independent manner as STAT3 or Nanog

    Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns

    Get PDF
    The study of pluripotent stem cells has generated much interest in both biology and medicine. Understanding the fundamentals of biological decisions, including what permits a cell to maintain pluripotency, that is, its ability to self-renew and thereby remain immortal, or to differentiate into multiple types of cells, is of profound importance. For clinical applications, pluripotent cells, including both embryonic stem cells and adult stem cells, have been proposed for cell replacement therapy for a number of human diseases and disorders, including Alzheimer's, Parkinson's, spinal cord injury and diabetes. One challenge in their usage for such therapies is understanding the mechanisms that allow the maintenance of pluripotency and controlling the specific differentiation into required functional target cells. Because of regulatory restrictions and biological feasibilities, there are many crucial investigations that are just impossible to perform using pluripotent stem cells (PSCs) from humans (for example, direct comparisons among panels of inbred embryonic stem cells from prime embryos obtained from pedigreed and fertile donors; genomic analysis of parent versus progeny PSCs and their identical differentiated tissues; intraspecific chimera analyses for pluripotency testing; and so on). However, PSCs from nonhuman primates are being investigated to bridge these knowledge gaps between discoveries in mice and vital information necessary for appropriate clinical evaluations. In this review, we consider the mRNAs and novel genes with unique expression and imprinting patterns that were discovered using systems biology approaches with primate pluripotent stem and germ cells
    corecore