639 research outputs found
Macroscopic modeling and simulations of room evacuation
We analyze numerically two macroscopic models of crowd dynamics: the
classical Hughes model and the second order model being an extension to
pedestrian motion of the Payne-Whitham vehicular traffic model. The desired
direction of motion is determined by solving an eikonal equation with density
dependent running cost, which results in minimization of the travel time and
avoidance of congested areas. We apply a mixed finite volume-finite element
method to solve the problems and present error analysis for the eikonal solver,
gradient computation and the second order model yielding a first order
convergence. We show that Hughes' model is incapable of reproducing complex
crowd dynamics such as stop-and-go waves and clogging at bottlenecks. Finally,
using the second order model, we study numerically the evacuation of
pedestrians from a room through a narrow exit.Comment: 22 page
Recommended from our members
Knowledge is social: learning in an open online, global community of practice
On the use of second-order derivatives and metamodel-based Monte-Carlo for uncertainty estimation in aerodynamics
International audienceThis article adresses the delicate issue of estimating physical uncertainties in aerodynamics. Usually, flow simulations are performed in a fully deterministic approach, although in real life operational uncertainty arises due to unpredictable factors that alter the flow conditions. In this article, we present and compare two methods to account for uncertainty in aerodynamic simulation. Firstly, automatic differentiation tools are used to estimate first- and second-order derivatives of aerodynamic coefficients with respect to uncertain variables, yielding an estimate of expectation and variance values (Method of Moments). Secondly, metamodelling techniques (radial basis functions, kriging) are employed in conjunction with Monte-Carlo simulations to derive statistical information. These methods are demonstrated for 3D Eulerian flows around the wing of a business aircraft at different regimes subject to uncertain Mach number and angle of attack
Comparison and Assessment of some Synthetic Jet Models
A synthetic jet is an oscillatory jet, with zero time-averaged mass-flux, used to manipulate boundary layer characteristics for flow control applications such as drag reduction, detachment delay, etc. The objective of this work is the comparison and assessment of some numerical models of synthetic jets, in the framework of compressible flows governed by Reynolds- averaged Navier-Stokes (RANS) equations. More specifically, we consider three geometrical models, ranging from a simple boundary condition, to the account of the jet slot and the computation of the flow in the underlying cavity. From numerical point of view, weak and strong oscillatory boundary conditions are tested. Moreover, a systematic grid and time-step refinement study is carried out. Finally, a comparison of the flows predicted with two turbulence closures (Spalart-Allmaras and Menter SST k − ω models) is achieved
Uncertainty quantification in a macroscopic traffic flow model calibrated on GPS data
International audienceThe objective of this paper is to analyze the inclusion of one or more random parameters into the deterministic Lighthill-Whitham-Richards traffic flow model and use a semi-intrusive approach to quantify uncertainty propagation. To verify the validity of the method, we test it against real data coming from vehicle embedded GPS systems, provided by Autoroutes Trafic
Scanning thermal lithography of tailored tert-butyl ester protected carboxylic acid functionalized (Meth)acrylate polymer platforms
In this paper, we report on the development of tailored polymer films for high-resolution atomic force microscopy based scanning thermal lithography (SThL). In particular, full control of surface chemical and topographical structuring was sought. Thin cross-linked films comprising poly(tert-butyl methacrylate) (MA(20)) or poly(tert-butyl acrylate) (A(20)) were prepared via UV initiated free radical polymerization. Thermogravimetric analysis (TGA) and FTIR spectroscopy showed that the heat-induced thermal decomposition of MA(20) by oxidative depolymerization is initially the primary reaction followed by tert-butyl ester thermolysis. By contrast, no significant depolymerization was observed for A(20). For A(20) and MA(20) (at higher temperatures and/or longer reaction times) the thermolysis of the tert-butyl ester liberates isobutylene and yields carboxylic acid groups, which react further intramolecularly to cyclic anhydrides. The values of the apparent activation energies (E(a)) for the thermolysis were calculated to be 125 ± 13 kJ mol(-1) and 116 ± 7 kJ mol(-1) for MA(20) and A(20), respectively. Both MA(20) and A(20) films showed improved thermomechanical stability during SThL compared to non cross-linked films. Carboxylic acid functionalized lines written by SThL in A(20) films had a typically ~10 times smaller width compared to those written in MA(20) films regardless of the tip radius of the heated probe and did not show any evidence for thermochemically or thermomechanically induced modification of film topography. These observations and the E(a) of 45 ± 3 kJ mol(-1) for groove formation in MA(20) estimated from the observed volume loss are attributed to oxidative thermal depolymerization during SThL of MA(20) films, which is considered to be the dominant reaction mechanism for MA(20). The smallest line width values obtained for MA(20) and A(20) films with SThL were 83 ± 7 nm and 21 ± 2 nm, whereas the depth of the lines was below 1 nm, respectively
Polydopamine as a Materials Platform to Promote Strong and Durable Interfaces in Thermoplastic Polymer-Titanium Joints
Joining thermoplastic polymers (TPMs) and metals to form lightweight hybrid structures is of growing industrial and commercial importance. The performance of such materials relies on the bonding strength and endurance of the formed TPM–metal interfaces. The available joining technologies and the mechanisms that govern interfacial adhesion are reviewed in this contribution, highlighting thermal bonding as a commercially attractive joining method. By focusing on molecular interactions to optimize interfacial adhesion, the use of dopamine as a building block to form polydopamine (PDA) based adhesive interlayers in such interfaces is discussed. This work also highlights the potential of PDA to be applied as a load-bearing adhesive—a notion considered to date unfeasible.</p
A Sensitivity Equation Method for Unsteady Compressible Flows: Implementation and Verification
Sensitivity analysis is a key element in a design optimization procedure. Although the related theory and numerical implementation are well known for steady problems, the application to unsteady partial differential equations, in particular in fluid mechanics, is still an active research area.In this report, a sensitivity equation method is described, in the context of compressible Navier-Stokes equations, and an efficient numerical implementation is proposed. The resulting approach is verified for two- and three-dimensional problems of increasing complexity
- …