414 research outputs found
Void elimination in screen printed thick film dielectric pastes
The problem is to understand the mechanisms for the formation and evolution of defects in wet screen printed layers. The primary objective is to know how best to alter the properties of the paste (rather than the geometry of the screen printing process itself) in order to eliminate the defects.
With these goals in mind the work done during the Study Group reported here was as follows; to describe a simple model for the closure of craters, a model for the partial closure of vias, a possible mechanism for the formation of pinholes and finally a more detailed consideration of the screen printing process
Next-Generation Invaders? Hotspots for Naturalised Sleeper Weeds in Australia under Future Climates
Naturalised, but not yet invasive plants, pose a nascent threat to biodiversity. As climate regimes continue to change, it is likely that a new suite of invaders will emerge from the established pool of naturalised plants. Pre-emptive management of locations that may be most suitable for a large number of potentially invasive plants will help to target monitoring, and is vital for effective control. We used species distribution models (SDM) and invasion-hotspot analysis to determine where in Australia suitable habitat may occur for 292 naturalised plants. SDMs were built in MaxEnt using both climate and soil variables for current baseline conditions. Modelled relationships were projected onto two Representative Concentration Pathways for future climates (RCP 4.5 and 8.5), based on seven global climate models, for two time periods (2035, 2065). Model outputs for each of the 292 species were then aggregated into single ‘hotspot’ maps at two scales: continental, and for each of Australia’s 37 ecoregions. Across Australia, areas in the south-east and south-west corners of the continent were identified as potential hotspots for naturalised plants under current and future climates. These regions provided suitable habitat for 288 and 239 species respectively under baseline climates. The areal extent of the continental hotspot was projected to decrease by 8.8% under climates for 2035, and by a further 5.2% by 2065. A similar pattern of hotspot contraction under future climates was seen for the majority of ecoregions examined. However, two ecoregions - Tasmanian temperate forests and Australian Alps montane grasslands - showed increases in the areal extent of hotspots of >45% under climate scenarios for 2065. The alpine ecoregion also had an increase in the number of naturalised plant species with abiotically suitable habitat under future climate scenarios, indicating that this area may be particularly vulnerable to future incursions by naturalised plants.11 page(s
The association of antiphospholipid antibodies with severe early-onset pre-eclampsia
Objective. To confirm the association of antiphospholipid antibodies with early onset of severe pre-eclampsia before 30 weeks' gestation.Study design. Thirty-four patients with diastolic blood pressure levels ≥ 110 mmHg and at least 2+ proteinuria before the 30th week of pregnancy were randomly chosen for inclusion in the study. Blood samples were taken for assessment of anticardiolipin antibodies (ACAs), lupus anticoagulant, syphilitic serology and antinuclear antibodies. Fifteen normal antenatal patients matched for age, parity and gestational age acted as control subjects.Results. Four of the 34 women (11,7%) in the study group had elevated levels of both ACAs and lupus anticoagulant, compared with none in the control group. This was not found to be statistically different.Conclusion. Given the low incidence of positive ACAs in early-onset severe pre-eclampsia it is unlikely that they are implicated in its pathogenesis. It is possible that they represent a small subset of patients with alternative or combined pathology
The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis
Leaf transpiration rate (E) frequently shows a peaked response to increasing vapour pressure deficit (D). The mechanisms for the decrease in E at high D, known as the 'apparent feed-forward response', are strongly debated but explanations to date have exclusively focused on hydraulic processes. However, stomata also respond to signals related to photosynthesis. We investigated whether the apparent feed-forward response of E to D in the field can be explained by the response of photosynthesis to temperature (T), which normally co-varies with D in field conditions. As photosynthesis decreases with increasing T past its optimum, it may drive a decrease in stomatal conductance (gs) that is additional to the response of gs to increasing D alone. If this additional decrease is sufficiently steep and coupling between A and gs occurs, it could cause an overall decrease in E with increasing D. We tested this mechanism using a gas exchange model applied to leaf-scale and whole-tree CO2 and H2O fluxes measured on Eucalyptus saligna growing in whole-tree chambers. A peaked response of E to D was observed at both leaf and whole-tree scales. We found that this peaked response was matched by a gas exchange model only when T effects on photosynthesis were incorporated. We conclude that field-based studies of the relationship between E and D need to consider signals related to changing photosynthetic rates in addition to purely hydraulic mechanisms. © 2014 Elsevier B.V
Rooting depth explains [CO <inf>2</inf>]× drought interaction in Eucalyptus saligna
Elevated atmospheric [CO 2] (eCa) often decreases stomatal conductance, which may delay the start of drought, as well as alleviate the effect of dry soil on plant water use and carbon uptake. We studied the interaction between drought and eCa in a whole-tree chamber experiment with Eucalyptus saligna. Trees were grown for 18 months in their Ca treatments before a 4-month dry-down. Trees grown in eCa were smaller than those grown in ambient Ca (aCa) due to an early growth setback that was maintained throughout the duration of the experiment. Pre-dawn leaf water potentials were not different between Ca treatments, but were lower in the drought treatment than the irrigated control. Counter to expectations, the drought treatment caused a larger reduction in canopy-average transpiration rates for trees in the eCa treatment compared with aCa. Total tree transpiration over the dry-down was positively correlated with the decrease in soil water storage, measured in the top 1.5 m, over the drying cycle; however, we could not close the water budget especially for the larger trees, suggesting soil water uptake below 1.5 m depth. Using neutron probe soil water measurements, we estimated fractional water uptake to a depth of 4.5 m and found that larger trees were able to extract more water from deep soil layers. These results highlight the interaction between rooting depth and response of tree water use to drought. The responses of tree water use to eCa involve interactions between tree size, root distribution and soil moisture availability that may override the expected direct effects of eCa. It is essential that these interactions be considered when interpreting experimental results. © 2011 The Author. Published by Oxford University Press. A ll rights reserved
Testing Hardy nonlocality proof with genuine energy-time entanglement
We show two experimental realizations of Hardy ladder test of quantum
nonlocality using energy-time correlated photons, following the scheme proposed
by A. Cabello \emph{et al.} [Phys. Rev. Lett. \textbf{102}, 040401 (2009)].
Unlike, previous energy-time Bell experiments, these tests require precise
tailored nonmaximally entangled states. One of them is equivalent to the
two-setting two-outcome Bell test requiring a minimum detection efficiency. The
reported experiments are still affected by the locality and detection
loopholes, but are free of the post-selection loophole of previous energy-time
and time-bin Bell tests.Comment: 5 pages, revtex4, 6 figure
Reconciling the optimal and empirical approaches to modelling stomatal conductance
Models of vegetation function are widely used to predict the effects of climate change on carbon, water and nutrient cycles of terrestrial ecosystems, and their feedbacks to climate. Stomatal conductance, the process that governs plant water use and carbon uptake, is fundamental to such models. In this paper, we reconcile two long-standing theories of stomatal conductance. The empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of stomatal behaviour in response to environmental conditions. The optimal approach is based on the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained. We reconcile these two approaches by showing that the theory of optimal stomatal conductance can be used to derive a model of stomatal conductance that is closely analogous to the empirical models. Consequently, we obtain a unified stomatal model which has a similar form to existing empirical models, but which now provides a theoretical interpretation for model parameter values. The key model parameter, g1, is predicted to increase with growth temperature and with the marginal water cost of carbon gain. The new model is fitted to a range of datasets ranging from tropical to boreal trees. The parameter g1 is shown to vary with growth temperature, as predicted, and also with plant functional type. The model is shown to correctly capture responses of stomatal conductance to changing atmospheric CO2, and thus can be used to test for stomatal acclimation to elevated CO2. The reconciliation of the optimal and empirical approaches to modelling stomatal conductance is important for global change biology because it provides a simple theoretical framework for analyzing, and simulating, the coupling between carbon and water cycles under environmental change. © 2011 Blackwell Publishing Ltd
Interactive effects of elevated CO <inf>2</inf> and drought on nocturnal water fluxes in Eucalyptus saligna
Nocturnal water flux has been observed in trees under a variety of environmental conditions and can be a significant contributor to diel canopy water flux. Elevated atmospheric CO 2 (elevated [CO 2]) can have an important effect on day-time plant water fluxes, but it is not known whether it also affects nocturnal water fluxes. We examined the effects of elevated [CO 2] on nocturnal water flux of field-grown Eucalyptus saligna trees using sap flux through the tree stem expressed on a sapwood area (J s) and leaf area (E t) basis. After 19 months growth under well-watered conditions, drought was imposed by withholding water for 5 months in the summer, ending with a rain event that restored soil moisture. Reductions in J s and E t were observed during the severe drought period in the dry treatment under elevated [CO 2], but not during moderate- and post-drought periods. Elevated [CO 2] affected night-time sap flux density which included the stem recharge period, called 'total night flux' (19:00 to 05:00, J s,r), but not during the post-recharge period, which primarily consisted of canopy transpiration (23:00 to 05:00, J s,c). Elevated [CO 2] wet (EW) trees exhibited higher J s,r than ambient [CO 2] wet trees (AW) indicating greater water flux in elevated [CO 2] under well-watered conditions. However, under drought conditions, elevated [CO 2] dry (ED) trees exhibited significantly lower J s,r than ambient [CO 2] dry trees (AD), indicating less water flux during stem recharge under elevated [CO 2]. J s,c did not differ between ambient and elevated [CO 2]. Vapour pressure deficit (D) was clearly the major influence on night-time sap flux. D was positively correlated with J s,r and had its greatest impact on J s,r at high D in ambient [CO 2]. Our results suggest that elevated [CO 2] may reduce night-time water flux in E. saligna when soil water content is low and D is high. While elevated [CO 2] affected J s,r, it did not affect day-time water flux in wet soil, suggesting that the responses of J s,r to environmental factors cannot be directly inferred from day-time patterns. Changes in J s,r are likely to influence pre-dawn leaf water potential, and plant responses to water stress. Nocturnal fluxes are clearly important for predicting effects of climate change on forest physiology and hydrology. © 2011 The Author. Published by Oxford University Press. A ll rights reserved
Whole-tree chambers for elevated atmospheric CO<inf>2</inf> experimentation and tree scale flux measurements in south-eastern Australia: The Hawkesbury Forest Experiment
Resolving ecophysiological processes in elevated atmospheric CO2 (Ca) at scales larger than single leaves poses significant challenges. Here, we describe a field-based experimental system designed to grow trees up to 9m tall in elevated Ca with the capacity to control air temperature and simultaneously measure whole-tree gas exchange. In western Sydney, Australia, we established the Hawkesbury Forest Experiment (HFE) where we built whole-tree chambers (WTC) to measure whole-tree CO2 and water fluxes of an evergreen broadleaf tree, Eucalyptus saligna. A single E. saligna tree was grown from seedling to small tree within each of 12 WTCs; six WTCs were maintained at ambient Ca and six WTCs were maintained at elevated Ca, targeted at ambient Ca +240μmolmol-1. All 12 WTCs were controlled to track ambient outside air temperature (Tair) and air water vapour deficit (Dair). During the experimental period, Tair, Dair and Ca in the WTCs were within 0.5°C, 0.3kPa, and 15μmolmol-1 of the set-points for 90% of the time, respectively. Diurnal responses of whole-tree CO2 and water vapour fluxes are analysed, demonstrating the ability of the tree chamber system to measure rapid environmental responses of these fluxes of entire trees. The light response of CO2 uptake for entire trees showed a clear diurnal hysteresis, attributed to stomatal closure at high Dair. Tree scale CO2 fluxes confirm the hypothesised deleterious effect of chilling night-time temperatures on whole-tree carbon gain in this subtropical Eucalyptus. The whole-tree chamber flux data add an invaluable scale to measurements in both ambient and elevated Ca and allow us to elucidate the mechanisms driving tree productivity responses to elevated Ca in interaction with water availability and temperature. © 2010 Elsevier B.V
Incorporating non-stomatal limitation improves the performance of leaf and canopy models at high vapour pressure deficit
Vapour pressure deficit (D) is projected to increase in the future as temperature rises. In response to increased D, stomatal conductance (gs) and photosynthesis (A) are reduced, which may result in significant reductions in terrestrial carbon, water and energy fluxes. It is thus important for gas exchange models to capture the observed responses of gs and A with increasing D. We tested a series of coupled A-gs models against leaf gas exchange measurements from the Cumberland Plain Woodland (Australia), where D regularly exceeds 2 kPa and can reach 8 kPa in summer. Two commonly used A-gs models were not able to capture the observed decrease in A and gs with increasing D at the leaf scale. To explain this decrease in A and gs, two alternative hypotheses were tested: hydraulic limitation (i.e., plants reduce gs and/or A due to insufficient water supply) and non-stomatal limitation (i.e., downregulation of photosynthetic capacity). We found that the model that incorporated a non-stomatal limitation captured the observations with high fidelity and required the fewest number of parameters. Whilst the model incorporating hydraulic limitation captured the observed A and gs, it did so via a physical mechanism that is incorrect. We then incorporated a non-stomatal limitation into the stand model, MAESPA, to examine its impact on canopy transpiration and gross primary production. Accounting for a non-stomatal limitation reduced the predicted transpiration by ~19%, improving the correspondence with sap flow measurements, and gross primary production by ~14%. Given the projected global increases in D associated with future warming, these findings suggest that models may need to incorporate non-stomatal limitation to accurately simulate A and gs in the future with high D. Further data on non-stomatal limitation at high D should be a priority, in order to determine the generality of our results and develop a widely applicable model. © The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected]. was supported by a PhD scholarship from Hawkesbury Institute for the Environment, Western Sydney University. M.G.D.K. acknowledges funding from the Australian Research Council (ARC) Centre of Excellence for Climate Extremes (CE170100023), the ARC Discovery Grant (DP190101823) and support from the NSW Research Attraction and Acceleration Program. EucFACE was built as an initiative of the Australian Government as part of the Nation-building Economic Stimulus Package and is supported by the Australian Commonwealth in collaboration with Western Sydney University. It is also part of a Terrestrial Ecosystem Research Network Super-site facility
- …