4,566 research outputs found

    Galaxy alignment on large and small scales

    Full text link
    Galaxies are not randomly distributed across the universe but showing different kinds of alignment on different scales. On small scales satellite galaxies have a tendency to distribute along the major axis of the central galaxy, with dependence on galaxy properties that both red satellites and centrals have stronger alignment than their blue counterparts. On large scales, it is found that the major axes of Luminous Red Galaxies (LRGs) have correlation up to 30Mpc/h. Using hydro-dynamical simulation with star formation, we investigate the origin of galaxy alignment on different scales. It is found that most red satellite galaxies stay in the inner region of dark matter halo inside which the shape of central galaxy is well aligned with the dark matter distribution. Red centrals have stronger alignment than blue ones as they live in massive haloes and the central galaxy-halo alignment increases with halo mass. On large scales, the alignment of LRGs is also from the galaxy-halo shape correlation, but with some extent of mis-alignment. The massive haloes have stronger alignment than haloes in filament which connect massive haloes. This is contrary to the naive expectation that cosmic filament is the cause of halo alignment.Comment: 4 pages, 3 figures, To appear in the proceedings of the IAU Symposium 308 "The Zeldovich Universe: Genesis and Growth of the Cosmic Web

    Evaluating the Chinese Revised Controlling Behaviors Scale (C-CBS-R)

    Get PDF
    The present study evaluated the utility of the Chinese version of the Revised Controlling Behaviors Scale (C-CBS-R) as a measure of controlling behaviors in violent Chinese intimate relationships. Using a mixed-methods approach, in-depth, individual interviews were conducted with 200 Chinese women survivors to elicit qualitative data about their personal experiences of control in intimate relationships. The use of controlling behaviors was also assessed using the C-CBS-R. Interview accounts suggested that the experiences of 91 of the women were consistent with the description of coercive control according to Dutton and Goodman’s (2005) conceptualization of coercion. Using the split-half validation procedure, a receiver operating characteristics (ROC) curve analysis was conducted with the first half of the sample. The area under the curve (AUC) for using the C-CBS-R to identify high control was .99, and the cutoff score of 1.145 maximized both sensitivity and specificity. Applying the cutoff score to the second half gave a sensitivity of 96% and a specificity of 95%. Overall, the C-CBS-R has demonstrated utility as a measure of controlling behaviors with a cutoff score for distinguishing high from low levels of control in violent Chinese intimate relationships

    Types and correlates of school non-attendance in students with autism spectrum disorders

    Get PDF
    School non-attendance in autism spectrum disorders (ASD) has received very little attention to date. The study aimed to provide a comprehensive description of school non-attendance in students with ASD. Through an online survey, parents of 486 children (mean age 11 years) reported on school attendance over one month, and reasons for instances of non-attendance. On average, students missed five days of school of a possible 23 days. Persistent non-attendance (absent on 10%+ of available sessions) occurred among 43% of students. School non-attendance was associated with child older age, not living in a two-parent household, parental unemployment and, especially, attending a mainstream school. School refusal accounted for 43% of non-attendance. School exclusion and school withdrawal each accounted for 9% of absences. Truancy was almost non-existent. Non-problematic absenteeism (mostly related to medical appointments and illness) accounted for 32% of absences. Non-problematic absenteeism was more likely among those with intellectual disability, school refusal was more likely among older students, and school exclusion was more likely among students from single-parent, unemployed, and well educated households. Findings suggest school non-attendance in ASD is a significant issue, and that it is important to capture detail about attendance patterns and reasons for school non-attendance

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Robust Chauvenet Outlier Rejection

    Full text link
    Sigma clipping is commonly used in astronomy for outlier rejection, but the number of standard deviations beyond which one should clip data from a sample ultimately depends on the size of the sample. Chauvenet rejection is one of the oldest, and simplest, ways to account for this, but, like sigma clipping, depends on the sample's mean and standard deviation, neither of which are robust quantities: Both are easily contaminated by the very outliers they are being used to reject. Many, more robust measures of central tendency, and of sample deviation, exist, but each has a tradeoff with precision. Here, we demonstrate that outlier rejection can be both very robust and very precise if decreasingly robust but increasingly precise techniques are applied in sequence. To this end, we present a variation on Chauvenet rejection that we call "robust" Chauvenet rejection (RCR), which uses three decreasingly robust/increasingly precise measures of central tendency, and four decreasingly robust/increasingly precise measures of sample deviation. We show this sequential approach to be very effective for a wide variety of contaminant types, even when a significant -- even dominant -- fraction of the sample is contaminated, and especially when the contaminants are strong. Furthermore, we have developed a bulk-rejection variant, to significantly decrease computing times, and RCR can be applied both to weighted data, and when fitting parameterized models to data. We present aperture photometry in a contaminated, crowded field as an example. RCR may be used by anyone at https://skynet.unc.edu/rcr, and source code is available there as well.Comment: 62 pages, 48 figures, 7 tables, accepted for publication in ApJ
    • …
    corecore