38 research outputs found

    Markov Chain Monte Carlo Based on Deterministic Transformations

    Full text link
    In this article we propose a novel MCMC method based on deterministic transformations T: X x D --> X where X is the state-space and D is some set which may or may not be a subset of X. We refer to our new methodology as Transformation-based Markov chain Monte Carlo (TMCMC). One of the remarkable advantages of our proposal is that even if the underlying target distribution is very high-dimensional, deterministic transformation of a one-dimensional random variable is sufficient to generate an appropriate Markov chain that is guaranteed to converge to the high-dimensional target distribution. Apart from clearly leading to massive computational savings, this idea of deterministically transforming a single random variable very generally leads to excellent acceptance rates, even though all the random variables associated with the high-dimensional target distribution are updated in a single block. Since it is well-known that joint updating of many random variables using Metropolis-Hastings (MH) algorithm generally leads to poor acceptance rates, TMCMC, in this regard, seems to provide a significant advance. We validate our proposal theoretically, establishing the convergence properties. Furthermore, we show that TMCMC can be very effectively adopted for simulating from doubly intractable distributions. TMCMC is compared with MH using the well-known Challenger data, demonstrating the effectiveness of of the former in the case of highly correlated variables. Moreover, we apply our methodology to a challenging posterior simulation problem associated with the geostatistical model of Diggle et al. (1998), updating 160 unknown parameters jointly, using a deterministic transformation of a one-dimensional random variable. Remarkable computational savings as well as good convergence properties and acceptance rates are the results.Comment: 28 pages, 3 figures; Longer abstract inside articl

    A Matrix--free Likelihood Method for Exploratory Factor Analysis of High-dimensional Gaussian Data

    Get PDF
    This paper proposes a novel profile likelihood method for estimating the covariance parameters in exploratory factor analysis of high-dimensional Gaussian datasets with fewer observations than number of variables. An implicitly restarted Lanczos algorithm and a limited-memory quasi-Newton method are implemented to develop a matrix-free framework for likelihood maximization. Simulation results show that our method is substantially faster than the expectation-maximization solution without sacrificing accuracy. Our method is applied to fit factor models on data from suicide attempters, suicide ideators and a control group.Comment: 10 pages, 5 figures, 4 table

    Model-based Personalized Synthetic MR Imaging

    Full text link
    Synthetic Magnetic Resonance (MR) imaging predicts images at new design parameter settings from a few observed MR scans. Model-based methods, that use both the physical and statistical properties underlying the MR signal and its acquisition, can predict images at any setting from as few as three scans, allowing it to be used in individualized patient- and anatomy-specific contexts. However, the estimation problem in model-based synthetic MR imaging is ill-posed and so regularization, in the form of correlated Gaussian Markov Random Fields, is imposed on the voxel-wise spin-lattice relaxation time, spin-spin relaxation time and the proton density underlying the MR image. We develop theoretically sound but computationally practical matrix-free estimation methods for synthetic MR imaging. Our evaluations demonstrate excellent ability of our methods to synthetize MR images in a clinical framework and also estimation and prediction accuracy and consistency. An added strength of our model-based approach, also developed and illustrated here, is the accurate estimation of standard errors of regional means in the synthesized images.Comment: 13 pages, 5 figures, 5 table

    Adjusting for Spatial Effects in Genomic Prediction

    Get PDF
    This paper investigates the problem of adjusting for spatial effects in genomic prediction. Despite being seldomly considered in genome-wide association studies (GWAS), spatial effects often affect phenotypic measurements of plants. We consider a Gaussian random field (GRF) model with an additive covariance structure that incorporates genotype effects, spatial effects and subpopulation effects. An empirical study shows the existence of spatial effects and heterogeneity across different subpopulation families while simulations illustrate the improvement in selecting genotypically superior plants by adjusting for spatial effects in genomic prediction
    corecore