6 research outputs found

    Methane and carbon dioxide adsorption on edge-functionalized graphene: A comparative DFT study

    Full text link
    With a view towards optimizing gas storage and separation in crystalline and disordered nanoporous carbon-based materials, we use ab initio density functional theory calculations to explore the effect of chemical functionalization on gas binding to exposed edges within model carbon nanostructures. We test the geometry, energetics, and charge distribution of in-plane and out-of-plane binding of CO2 and CH4 to model zigzag graphene nanoribbons edge-functionalized with COOH, OH, NH2, H2PO3, NO2, and CH3. Although different choices for the exchange-correlation functional lead to a spread of values for the binding energy, trends across the functional groups are largely preserved for each choice, as are the final orientations of the adsorbed gas molecules. We find binding of CO2 to exceed that of CH4 by roughly a factor of two. However, the two gases follow very similar trends with changes in the attached functional group, despite different molecular symmetries. Our results indicate that the presence of NH2, H2PO3, NO2, and COOH functional groups can significantly enhance gas binding with respect to a hydrogen-passivated edge, making the edges potentially viable binding sites in materials with high concentrations of edge carbons. To first order, in-plane binding strength correlates with the larger permanent and induced dipole moments on these groups. Implications for tailoring carbon structures for increased gas uptake and improved CO2/CH4 selectivity are discussed.Comment: 12 pages, 7 figure

    Insights into the Epitaxial Relationships between One-Dimensional Nanomaterials and Metal Catalyst Surfaces Using Density Functional Theory Calculations

    No full text
    This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in order to explain the nanotube growth of specific nanotube chiralities on various Ni-Fe catalyst surfaces. The metal catalyst model is a two-dimensional flat surface with varying metal-metal bond lengths and comprising of constituent metal atoms. The effect of the composition change was modeled as a change in the bond length of the model catalyst surface and density functional theory based calculations were used to study specific nanotube caps. Our results indicated that nanotube caps like (8,4) and (6,5) show enhanced binding with increased metal-metal bond lengths in the nanoparticle in excellent agreement with the experimental observations. Later, we used this epitaxial nucleation model and combined with a previously proposed chirality-dependent growth rate model to explore better catalysts that will preferentially grow an enhanced chirality distribution of metallic nanotubes. From our DFT calculations and other geometrical considerations for nanotube growth, we demonstrated that the pure Ni0.5Cu0.5 metal nanoparticles and its lattice-strained surfaces can serve as a promising catalyst for enhanced growth of metallic nanotubes. Finally, we extended this model of epitaxial growth to study the growth of,andoriented nanowires on gold metal nanoparticles where a faster growth rate ofnanowires was previously observed in experiments on shaped nanoparticles than that on spherical nanoparticles. The DFT calculations indicated an enhanced growth selectivity of theoriented nanowires on the Au(111) surfaces. However, the DFT results also show that theandNWs will preferentially grow on the Au(100) surface than on the Au(100) surface. The epitaxial model based DFT calculations of nanotube and nanowire growth on metal catalyst surfaces presented in this dissertation, provide a deep insight into their epitaxial growth mechansims and, can be easily exploited to layout better design principles of synthesizing catalysts that helps in growing these one-dimensional nanomaterials with desired material properties

    Insights into the Epitaxial Relationships between One-Dimensional Nanomaterials and Metal Catalyst Surfaces Using Density Functional Theory Calculations

    Get PDF
    This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in order to explain the nanotube growth of specific nanotube chiralities on various Ni-Fe catalyst surfaces. The metal catalyst model is a two-dimensional flat surface with varying metal-metal bond lengths and comprising of constituent metal atoms. The effect of the composition change was modeled as a change in the bond length of the model catalyst surface and density functional theory based calculations were used to study specific nanotube caps. Our results indicated that nanotube caps like (8,4) and (6,5) show enhanced binding with increased metal-metal bond lengths in the nanoparticle in excellent agreement with the experimental observations. Later, we used this epitaxial nucleation model and combined with a previously proposed chirality-dependent growth rate model to explore better catalysts that will preferentially grow an enhanced chirality distribution of metallic nanotubes. From our DFT calculations and other geometrical considerations for nanotube growth, we demonstrated that the pure Ni0.5Cu0.5 metal nanoparticles and its lattice-strained surfaces can serve as a promising catalyst for enhanced growth of metallic nanotubes. Finally, we extended this model of epitaxial growth to study the growth of,andoriented nanowires on gold metal nanoparticles where a faster growth rate ofnanowires was previously observed in experiments on shaped nanoparticles than that on spherical nanoparticles. The DFT calculations indicated an enhanced growth selectivity of theoriented nanowires on the Au(111) surfaces. However, the DFT results also show that theandNWs will preferentially grow on the Au(100) surface than on the Au(100) surface. The epitaxial model based DFT calculations of nanotube and nanowire growth on metal catalyst surfaces presented in this dissertation, provide a deep insight into their epitaxial growth mechansims and, can be easily exploited to layout better design principles of synthesizing catalysts that helps in growing these one-dimensional nanomaterials with desired material properties

    Systems and methods for converting carbon dioxide into chemical feedstock

    Get PDF
    Provided herein are systems containing a solar reactor having a mixture of plasmonic material and oxygen-conducting material that can convert carbon dioxide into a chemical feedstock

    Enhanced Gas Adsorption on Graphitic Substrates via Defects and Local Curvature: A Density Functional Theory Study

    No full text
    Using van-der-Waals-corrected density functional theory calculations, we explore the possibility of engineering the local structure and morphology of high-surface-area graphene-derived materials to improve the uptake of methane and carbon dioxide for gas storage and sensing. We test the sensitivity of the gas adsorption energy to the introduction of native point defects, curvature, and the application of strain. The binding energy at topological point defect sites is inversely correlated with the number of missing carbon atoms, causing Stone-Wales defects to show the largest enhancement with respect to pristine graphene (similar to 20%). Improvements of similar magnitude are observed at concavely curved surfaces in buckled graphene sheets under compressive strain, whereas tensile strain tends to weaken gas binding. Trends for CO2 and CH4 are, similar, although CO2 binding is generally stronger by similar to 4 to 5 kJ mol(-1). However, the differential between the adsorption of CO2 and CH4 is much higher on folded graphene sheets and at concave curvatures; this could possibly be leveraged for CH4/CO2 flow separation and gasselective sensors
    corecore