28 research outputs found
Coherent optical manipulation of electron spin in charged semiconductor quantum dots.
In this work, we study the resonant nonlinear optical response obtained when optical fields are used to excite charged semiconductor quantum dots (QDs). The basic physics of charged excitons (trions) created by optical excitation of charged QDs is of interest from the point of view of optically driven spin based quantum computing (QC). Stimulated Raman excitation, resonantly enhanced by the optical dipole coupling to the trion state, was used to optically generate electron spin coherence in the ground state of charged QDs. The evolution of the spin coherence was monitored through quantum beats in the phase-sensitively detected four wave mixing signal. The decay of the beats is a measure of the spin coherence time, which was found to be at least an order of magnitude greater than either the trion dipole coherence, or the Raman coherence time between excitons in a single neutral QD. A fascinating outcome of the experiment was the first observation of a contribution to the spin coherence induced by the vacuum field, which is also responsible for spontaneous emission from the trion state, known as spontaneously generated coherence (SGC). QC demands that coherent optical manipulations should be performed within the spin coherence time. We performed coherent optical control experiments, with a pair of phase-locked pump pulses, that showed the quantum nature of the coherence through interference of different quantum mechanical pathways. We showed both in experiment and theory that we can manipulate the spin coherence on the time scale of the Larmor frequency, as well as on an ultrafast femtosecond time scale, corresponding to the optical frequency of the trion state. Finally, resonant optical excitation of both the bright and nominally forbidden transitions from a single electron spin in a QD to the trion state were demonstrated. This allows for direct optical access to all the transitions required for optically driven QC with QD electron spins. We used frequency-domain nonlinear spectroscopy measurements on single QD trions to obtain the trion dipole decoherence and decay rates. Further, we demonstrated that the single electron spin coherence could be generated and detected optically, and found that the spin coherence time was significantly greater than in ensemble measurements at the same magnetic field.Ph.D.Atomic physicsCondensed matter physicsOpticsPure SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/124664/2/3150194.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/124664/4/license_rd
Strong magnetic coupling between an electronic spin qubit and a mechanical resonator
We describe a technique that enables a strong, coherent coupling between a
single electronic spin qubit associated with a nitrogen-vacancy impurity in
diamond and the quantized motion of a magnetized nano-mechanical resonator tip.
This coupling is achieved via careful preparation of dressed spin states which
are highly sensitive to the motion of the resonator but insensitive to
perturbations from the nuclear spin bath. In combination with optical pumping
techniques, the coherent exchange between spin and motional excitations enables
ground state cooling and the controlled generation of arbitrary quantum
superpositions of resonator states. Optical spin readout techniques provide a
general measurement toolbox for the resonator with quantum limited precision
Coherence of an optically illuminated single nuclear spin qubit
We investigate the coherence properties of individual nuclear spin quantum
bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal
electronic spin associated with a nitrogen-vacancy (NV) center is being
interrogated by optical radiation. The resulting nuclear spin dynamics are
governed by time-dependent hyperfine interaction associated with rapid
electronic transitions, which can be described by a spin-fluctuator model. We
show that due to a process analogous to motional averaging in nuclear magnetic
resonance, the nuclear spin coherence can be preserved after a large number of
optical excitation cycles. Our theoretical analysis is in good agreement with
experimental results. It indicates a novel approach that could potentially
isolate the nuclear spin system completely from the electronic environment.Comment: 5 pages, 2 figure
Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots
We report on the coherent optical excitation of electron spin polarization in
the ground state of charged GaAs quantum dots via an intermediate charged
exciton (trion) state. Coherent optical fields are used for the creation and
detection of the Raman spin coherence between the spin ground states of the
charged quantum dot. The measured spin decoherence time, which is likely
limited by the nature of the spin ensemble, approaches 10 ns at zero field. We
also show that the Raman spin coherence in the quantum beats is caused not only
by the usual stimulated Raman interaction but also by simultaneous spontaneous
radiative decay of either excited trion state to a coherent combination of the
two spin states.Comment: 4 pages, 3 figures. Minor modification
Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity
We demonstrate coupling of the zero-phonon line of individual
nitrogen-vacancy centers and the modes of microring resonators fabricated in
single-crystal diamond. A zero-phonon line enhancement exceeding ten-fold is
estimated from lifetime measurements at cryogenic temperatures. The devices are
fabricated using standard semiconductor techniques and off-the-shelf materials,
thus enabling integrated diamond photonics.Comment: 5 pages, 4 figure
Prediction and measurement of the size-dependent stability of fluorescence in diamond over the entire nanoscale
Fluorescent defects in non-cytotoxic diamond nanoparticles are candidates for
qubits in quantum computing, optical labels in biomedical imaging and sensors
in magnetometry. For each application these defects need to be optically and
thermodynamically stable, and included in individual particles at suitable
concentrations (singly or in large numbers). In this letter, we combine
simulations, theory and experiment to provide the first comprehensive and
generic prediction of the size, temperature and nitrogen-concentration
dependent stability of optically active NV defects in nanodiamonds.Comment: Published in Nano Letters August 2009 24 pages, 6 figure