615 research outputs found
Simultaneous existence of two spin-wave modes in ultrathin Fe/GaAs(001) films studied by Brillouin Light Scattering: experiment and theory
A double-peaked structure was observed in the {\it in-situ} Brillouin Light
Scattering (BLS) spectra of a 6 \AA thick epitaxial Fe/GaAs(001) film for
values of an external magnetic field , applied along the hard in plane
direction, lower than a critical value kOe. This experimental
finding is theoretically interpreted in terms of a model which assumes a
non-homogeneous magnetic ground state characterized by the presence of
perperpendicular up/down stripe domains. For such a ground state, two spin-wave
modes, namely an acoustic and an optic mode, can exist. Upon increasing the
field the magnetization tilts in the film plane, and for the
ground state is homogeneous, thus allowing the existence of just a single
spin-wave mode. The frequencies of the two spin-wave modes were calculated and
successfully compared with the experimental data. The field dependence of the
intensities of the corresponding two peaks that are present in the BLS spectra
was also estimated, providing further support to the above-mentioned
interpretation.Comment: Shortened version (7 pages). Accepted for publication in Physical
Review
In-beam internal conversion electron spectroscopy with the SPICE detector
The SPectrometer for Internal Conversion Electrons (SPICE) has been
commissioned for use in conjunction with the TIGRESS -ray spectrometer
at TRIUMF's ISAC-II facility. SPICE features a permanent rare-earth magnetic
lens to collect and direct internal conversion electrons emitted from nuclear
reactions to a thick, highly segmented, lithium-drifted silicon detector. This
arrangement, combined with TIGRESS, enables in-beam -ray and internal
conversion electron spectroscopy to be performed with stable and radioactive
ion beams. Technical aspects of the device, capabilities, and initial
performance are presented
Self-Affirmation Improves Problem-Solving under Stress
High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings. © 2013 Creswell et al
ECOG-ACRIN (E4805) Randomized Phase II Study to Determine the Effect of 2 Different Doses of Aflibercept in Patients with Metastatic Renal Cell Carcinoma
Background—Aflibercept is a recombinantly-produced fusion protein that has potent anti-VEGF activity. We tested whether aflibercept has clinical activity in clear cell renal cell carcinoma (ccRCC). The recommended Phase 2 dose was 4 mg/kg but several patients treated at 1 mg/kg demonstrated prolonged progression-free survival (PFS). We therefore tested both doses in a parallel group randomized trial.
Methods—Eligible patients (pts) had histologically confirmed advanced or metastatic ccRCC and previous treatments including prior exposure to a VEGF RTKI. Patients received aflibercept (either 1 mg/kg or 4 mg/kg) day 1 of a 14-day cycle until progression. Patients randomized to 1 mg/kg could crossover to 4 mg/kg at progression. The primary endpoint was proportion alive and progression-free at 8 weeks. A Simon 2-stage design was used for each arm with 33 and 24 eligible pts/arm enrolled in stages 1 and 2.
Results—94 pts were enrolled, 59 and 35 to 4 mg and 1 mg doses, respectively. 72% had 1 prior tx most commonly sunitinib. 16 eligible pts crossed over at progression to the 4 mg dose. Most common adverse events were hypertension, proteinuria, and fatigue. Only 4 pts reported Grade 4 or higher toxicity. With 36/59 (61%) pts PFS at 8 wks, the 4-mg/kg dose met protocol specified efficacy criteria.
Conclusions—Aflibercept is active in previously treated ccRCC and may be worthy of further study
Microtubules in Bacteria: Ancient Tubulins Build a Five-Protofilament Homolog of the Eukaryotic Cytoskeleton
Microtubules play crucial roles in cytokinesis, transport, and motility, and are therefore superb targets for anti-cancer drugs. All tubulins evolved from a common ancestor they share with the distantly related bacterial cell division protein FtsZ, but while eukaryotic tubulins evolved into highly conserved microtubule-forming heterodimers, bacterial FtsZ presumably continued to function as single homopolymeric protofilaments as it does today. Microtubules have not previously been found in bacteria, and we lack insight into their evolution from the tubulin/FtsZ ancestor. Using electron cryomicroscopy, here we show that the tubulin homologs BtubA and BtubB form microtubules in bacteria and suggest these be referred to as “bacterial microtubules” (bMTs). bMTs share important features with their eukaryotic counterparts, such as straight protofilaments and similar protofilament interactions. bMTs are composed of only five protofilaments, however, instead of the 13 typical in eukaryotes. These and other results suggest that rather than being derived from modern eukaryotic tubulin, BtubA and BtubB arose from early tubulin intermediates that formed small microtubules. Since we show that bacterial microtubules can be produced in abundance in vitro without chaperones, they should be useful tools for tubulin research and drug screening
SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope
We describe the design of a new polarization sensitive receiver, SPT-3G, for
the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a
factor of ~20 improvement in mapping speed over the current receiver, SPTpol.
The sensitivity of the SPT-3G receiver will enable the advance from statistical
detection of B-mode polarization anisotropy power to high signal-to-noise
measurements of the individual modes, i.e., maps. This will lead to precise
(~0.06 eV) constraints on the sum of neutrino masses with the potential to
directly address the neutrino mass hierarchy. It will allow a separation of the
lensing and inflationary B-mode power spectra, improving constraints on the
amplitude and shape of the primordial signal, either through SPT-3G data alone
or in combination with BICEP-2/KECK, which is observing the same area of sky.
The measurement of small-scale temperature anisotropy will provide new
constraints on the epoch of reionization. Additional science from the SPT-3G
survey will be significantly enhanced by the synergy with the ongoing optical
Dark Energy Survey (DES), including: a 1% constraint on the bias of optical
tracers of large-scale structure, a measurement of the differential Doppler
signal from pairs of galaxy clusters that will test General Relativity on ~200
Mpc scales, and improved cosmological constraints from the abundance of
clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
Recommended from our members
Exome sequencing of Finnish isolates enhances rare-variant association power.
Exome-sequencing studies have generally been underpowered to identify deleterious alleles with a large effect on complex traits as such alleles are mostly rare. Because the population of northern and eastern Finland has expanded considerably and in isolation following a series of bottlenecks, individuals of these populations have numerous deleterious alleles at a relatively high frequency. Here, using exome sequencing of nearly 20,000 individuals from these regions, we investigate the role of rare coding variants in clinically relevant quantitative cardiometabolic traits. Exome-wide association studies for 64 quantitative traits identified 26 newly associated deleterious alleles. Of these 26 alleles, 19 are either unique to or more than 20 times more frequent in Finnish individuals than in other Europeans and show geographical clustering comparable to Mendelian disease mutations that are characteristic of the Finnish population. We estimate that sequencing studies of populations without this unique history would require hundreds of thousands to millions of participants to achieve comparable association power
- …