66 research outputs found
The Timing Counter of the MEG experiment: calibration and performance
The MEG detector is designed to test Lepton Flavor Violation in the
decay down to a Branching Ratio of a few
. The decay topology consists in the coincident emission of a
monochromatic photon in direction opposite to a monochromatic positron. A
precise measurement of the relative time is crucial to suppress
the background. The Timing Counter (TC) is designed to precisely measure the
time of arrival of the and to provide information to the trigger system.
It consists of two sectors up and down stream the decay target, each consisting
of two layers. The outer one made of scintillating bars and the inner one of
scintillating fibers. Their design criteria and performances are described.Comment: Presented at the 12th Topical Seminar on Innovative Particle and
Radiation Detectors (IPRD10) 7 - 10 June 2010, Siena. Accepted by Nuclear
Physics B (Proceedings Supplements) (2011)tal
Single-hit resolution measurement with MEG II drift chamber prototypes
Drift chambers operated with helium-based gas mixtures represent a common
solution for tracking charged particles keeping the material budget in the
sensitive volume to a minimum. The drawback of this solution is the worsening
of the spatial resolution due to primary ionisation fluctuations, which is a
limiting factor for high granularity drift chambers like the MEG II tracker. We
report on the measurements performed on three different prototypes of the MEG
II drift chamber aimed at determining the achievable single-hit resolution. The
prototypes were operated with helium/isobutane gas mixtures and exposed to
cosmic rays, electron beams and radioactive sources. Direct measurements of the
single hit resolution performed with an external tracker returned a value of
110 m, consistent with the values obtained with indirect measurements
performed with the other prototypes.Comment: 18 pages, 18 figure
Development and commissioning of the Timing Counter for the MEG Experiment
The Timing Counter of the MEG (Mu to Electron Gamma) experiment is designed
to deliver trigger information and to accurately measure the timing of the
in searching for the decay . It is part of a
magnetic spectrometer with the decay target in the center. It consists
of two sectors upstream and downstream the target, each one with two layers:
the inner one made with scintillating fibers read out by APDs for trigger and
track reconstruction, the outer one consisting in scintillating bars read out
by PMTs for trigger and time measurement. The design criteria, the obtained
performances and the commissioning of the detector are presented herein.Comment: 10 pages, 20 figures. Presented at the IEEE Nuclear Science Symposium
2010, Knoxville, TN, USA. Accepted by IEEE Transaction on Nuclear Scienc
The MEG detector for decay search
The MEG (Mu to Electron Gamma) experiment has been running at the Paul
Scherrer Institut (PSI), Switzerland since 2008 to search for the decay \meg\
by using one of the most intense continuous beams in the world. This
paper presents the MEG components: the positron spectrometer, including a thin
target, a superconducting magnet, a set of drift chambers for measuring the
muon decay vertex and the positron momentum, a timing counter for measuring the
positron time, and a liquid xenon detector for measuring the photon energy,
position and time. The trigger system, the read-out electronics and the data
acquisition system are also presented in detail. The paper is completed with a
description of the equipment and techniques developed for the calibration in
time and energy and the simulation of the whole apparatus.Comment: 59 pages, 90 figure
New constraint on the existence of the mu+-> e+ gamma decay
The analysis of a combined data set, totaling 3.6 \times 10^14 stopped muons
on target, in the search for the lepton flavour violating decay mu^+ -> e^+
gamma is presented. The data collected by the MEG experiment at the Paul
Scherrer Institut show no excess of events compared to background expectations
and yield a new upper limit on the branching ratio of this decay of 5.7 \times
10^-13 (90% confidence level). This represents a four times more stringent
limit than the previous world best limit set by MEG.Comment: 5 pages, 3 figures, a version accepted in Phys. Rev. Let
MEG Upgrade Proposal
We propose the continuation of the MEG experiment to search for the charged
lepton flavour violating decay (cLFV) \mu \to e \gamma, based on an upgrade of
the experiment, which aims for a sensitivity enhancement of one order of
magnitude compared to the final MEG result, down to the
level. The key features of this new MEG upgrade are an increased rate
capability of all detectors to enable running at the intensity frontier and
improved energy, angular and timing resolutions, for both the positron and
photon arms of the detector. On the positron-side a new low-mass, single
volume, high granularity tracker is envisaged, in combination with a new highly
segmented, fast timing counter array, to track positron from a thinner stopping
target. The photon-arm, with the largest liquid xenon (LXe) detector in the
world, totalling 900 l, will also be improved by increasing the granularity at
the incident face, by replacing the current photomultiplier tubes (PMTs) with a
larger number of smaller photosensors and optimizing the photosensor layout
also on the lateral faces. A new DAQ scheme involving the implementation of a
new combined readout board capable of integrating the diverse functions of
digitization, trigger capability and splitter functionality into one condensed
unit, is also under development. We describe here the status of the MEG
experiment, the scientific merits of the upgrade and the experimental methods
we plan to use.Comment: A. M. Baldini and T. Mori Spokespersons. Research proposal submitted
to the Paul Scherrer Institute Research Committee for Particle Physics at the
Ring Cyclotron. 131 Page
Measurement of the radiative decay of polarized muons in the MEG experiment
We studied the radiative muon decay by
using for the first time an almost fully polarized muon source. We identified a
large sample (~13000) of these decays in a total sample of 1.8x10^14 positive
muon decays collected in the MEG experiment in the years 2009--2010 and
measured the branching ratio B() =
(6.03+-0.14(stat.)+-0.53(sys.))x10^-8 for E_e > 45 MeV and E_{\gamma} > 40 MeV,
consistent with the Standard Model prediction. The precise measurement of this
decay mode provides a basic tool for the timing calibration, a normalization
channel, and a strong quality check of the complete MEG experiment in the
search for process.Comment: 8 pages, 7 figures. Added an introduction to NLO calculation which
was recently calculated. Published versio
Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN
A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed
in order to definitely clarify the possible existence of additional neutrino
states, as pointed out by neutrino calibration source experiments, reactor and
accelerator experiments and measure the corresponding oscillation parameters.
The experiment is based on two identical LAr-TPCs complemented by magnetized
spectrometers detecting electron and muon neutrino events at Far and Near
positions, 1600 m and 300 m from the proton target, respectively. The ICARUS
T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of
imaging mass, now running in the LNGS underground laboratory, will be moved at
the CERN Far position. An additional 1/4 of the T600 detector (T150) will be
constructed and located in the Near position. Two large area spectrometers will
be placed downstream of the two LAr-TPC detectors to perform charge
identification and muon momentum measurements from sub-GeV to several GeV
energy range, greatly complementing the physics capabilities. This experiment
will offer remarkable discovery potentialities, collecting a very large number
of unbiased events both in the neutrino and antineutrino channels, largely
adequate to definitely settle the origin of the observed neutrino-related
anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open
Symposium Preparatory Group, Kracow 10-12 September 201
Limits on scalar leptoquark interactions and consequences for GUTs
A colored weak singlet scalar state with hypercharge 4/3 is one of the
possible candidates for the explanation of the unexpectedly large
forward-backward asymmetry in t tbar production as measured by the CDF and D0
experiments. We investigate the role of this state in a plethora of flavor
changing neutral current processes and precision observables of down-quarks and
charged leptons. Our analysis includes tree- and loop-level mediated
observables in the K and B systems, the charged lepton sector, as well as the Z
to b bbar decay width. We perform a global fit of the relevant scalar
couplings. This approach can explain the (g-2)_mu anomaly while tensions among
the CP violating observables in the quark sector, most notably the nonstandard
CP phase (and width difference) in the Bs system cannot be fully relaxed. The
results are interpreted in a class of grand unified models which allow for a
light colored scalar with a mass below 1TeV. We find that the renormalizable
SU(5) scenario is not compatible with our global fit, while in the SO(10) case
the viability requires the presence of both the 126- and 120-dimensional
representations.Comment: 26 pages, 7 figures; version as publishe
The MEG detector for μ+→e+γ decay search
The MEG (Mu to Electron Gamma) experiment has been running at the Paul Scherrer Institut (PSI), Switzerland since 2008 to search for the decay mu(+) -> e(+)gamma by using one of the most intense continuous mu(+) beams in the world. This paper presents the MEG components: the positron spectrometer, including a thin target, a superconducting magnet, a set of drift chambers for measuring the muon decay vertex and the positron momentum, a timing counter for measuring the positron time, and a liquid xenon detector for measuring the photon energy, position and time. The trigger system, the read-out electronics and the data acquisition system are also presented in detail. The paper is completed with a description of the equipment and techniques developed for the calibration in time and energy and the simulation of the whole apparatus
- …