234 research outputs found

    Patterns of Influenza Vaccination Coverage in the United States from 2009 to 2015

    Full text link
    Background: Globally, influenza is a major cause of morbidity, hospitalization and mortality. Influenza vaccination has shown substantial protective effectiveness in the United States. We investigated state-level patterns of coverage rates of seasonal and pandemic influenza vaccination, among the overall population in the U.S. and specifically among children and the elderly, from 2009/10 to 2014/15, and associations with ecological factors. Methods and Findings: We obtained state-level influenza vaccination coverage rates from national surveys, and state-level socio-demographic and health data from a variety of sources. We employed a retrospective ecological study design, and used mixed-model regression to determine the levels of ecological association of the state-level vaccinations rates with these factors, both with and without region as a factor for the three populations. We found that health-care access is positively and significantly associated with mean influenza vaccination coverage rates across all populations and models. We also found that prevalence of asthma in adults are negatively and significantly associated with mean influenza vaccination coverage rates in the elderly populations. Conclusions: Health-care access has a robust, positive association with state-level vaccination rates across different populations. This highlights a potential population-level advantage of expanding health-care access.Comment: 10 pages, 2 figure

    Partner age differences and associated sexual risk behaviours among adolescent girls and young women in a cash transfer programme for schooling in Malawi

    Get PDF
    Background: Age disparities in sexual relationships have been proposed as a key risk factor for HIV transmission in Sub-Saharan Africa, but evidence remains inconclusive. The SIHR study, a cluster randomised trial of a cash transfer programme in Malawi, found that young women in the intervention groups were less likely to have had a sexual partner aged 25 or older, and less likely to test positive for HIV and HSV-2 at follow-up compared to control groups. We examined the hypotheses that girls in the intervention groups had smaller age differences than control groups and that large age differences were associated with relationship-level HIV transmission risk factors: inconsistent condom use, sex frequency, and relationship duration. Methods: We conducted an analysis of schoolgirls in the Schooling, Income, and Health Risk (SIHR) study aged 13-22 at baseline (n = 2907). We investigated the effects of study arm, trial stage and participant age on age differences in sexual relationships using a linear mixed-effects model. Cumulative-link mixed-effects models were used to estimate the effect of relationship age difference on condom use and sex frequency, and a Cox proportional hazard model was used to estimate the effect of relationship age difference on relationship duration. We controlled for the girl's age, number of partners, study group and study round. Results: Girls receiving cash transfers, on average, had smaller age differences in relationships compared to controls, though the estimated difference was not statistically significant (-0.43 years; 95% CI: -1.03, 0.17). The older the participant was, the smaller her age differences (-0.67 per 4-year increase in age; 95% CI: -0.99, - 0.35). Among controls, after the cash transfers had ended the average age difference was 0.82 years larger than during the intervention (95% CI: 0.43, 1.21), suggesting a possible indirect effect of the study on behaviour in the community as a whole. Across treatment groups, larger age differences in relationships were associated with lower levels of condom use, more frequent sex, and longer relationship durations. Conclusions: Cash-transfer programmes may prevent HIV transmission in part by encouraging young women to form age-similar relationships, which are characterised by increased condom use and reduced sex frequency. The benefits of these programmes may extend to those who are not directly receiving the cash

    Host-pathogen interactions, insect outbreaks, and natural selection for disease Resistance

    Get PDF
    The theory of insect population dynamics has shown that heterogeneity in natural-enemy attack rates is strongly stabilizing. We tested the usefulness of this theory for outbreaking insects, many of which are attacked by infectious pathogens. We measured heterogeneity among gypsy moth larvae in their risk of infection with a nucleopolyhedrovirus, which is effectively heterogeneity in the pathogen\u27s attack rate. Our data show that heterogeneity in infection risk in this insect is so high that it leads to a stable equilibrium in the models, which is inconsistent with the outbreaks seen in North American gypsy moth populations. Our data further suggest that infection risk declines after epidemics, in turn suggesting that the model assumption of constant infection risk is incorrect. We therefore constructed an alternative model in which natural selection drives fluctuations in infection risk, leading to reductions after epidemics because of selection for resistance and increases after epidemics because of a cost of resistance. This model shows cycles even for high heterogeneity, and experiments confirm that infection risk is indeed heritable. The model is very general, and so we argue that natural selection for disease resistance may play a role in many insect outbreaks. © 2008 by The University of Chicago. All rights reserved

    The Risk of a Mosquito-Borne Infectionin a Heterogeneous Environment

    Get PDF
    A common assumption about malaria, dengue, and other mosquito-borne infections is that the two main components of the risk of human infection—the rate at which people are bitten (human biting rate) and the proportion of mosquitoes that are infectious—are positively correlated. In fact, these two risk factors are generated by different processes and may be negatively correlated across space and time in heterogeneous environments. Uneven distribution of blood-meal hosts and larval habitat creates a spatial mosaic of demograPhic sources and sinks. Moreover, mosquito populations fluctuate temporally, forced by environmental variables such as rainfall, temperature, and humidity. These sources of spatial and temporal heterogeneity in the distribution of mosquito populations generate variability in the human biting rate, in the proportion of mosquitoes that are infectious, and in the risk of human infection. To understand how heterogeneity affects the epidemiology of mosquito-borne infections, we developed a set of simple models that incorporate heterogeneity in a stepwise fashion. These models predict that the human biting rate is highest shortly after the mosquito densities peak, near breeding sites where adult mosquitoes emerge, and around the edges of areas where humans are aggregated. In contrast, the proportion of mosquitoes that are infectious reflects the age structure of mosquito populations; it peaks where old mosquitoes are found, far from mosquito breeding habitat, and when mosquito population density is declining. Finally, we show that estimates for the average risk of infection that are based on the average entomological inoculation rate are strongly biased in heterogeneous environments
    corecore