133 research outputs found
Elevated Fibroblast growth factor 21 (FGF21) in obese, insulin resistant states is normalised by the synthetic retinoid Fenretinide in mice
The authors would like to thank undergraduate student Aleksandra Kowalczuk (University of Aberdeen) for assisting in experiments and Dr. Emma K. Lees (School of Health Sciences, Liverpool Hope University, Liverpool, UK) for invaluable discussions concerning the regulation of FGF21. We thank Dr. Calum Sutherland and Dr. Amy Cameron (both Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK) for technical support and expertise in performing hepatocyte studies. Fenretinide was a generous gift of T. Martin (Johnson & Johnson, New Brunswick, NJ) and U. Thumeer (Cilag AG, Schaffhausen, Switzerland), for use completely without restriction or obligation. Quantitative-PCR was carried out using the qPCR Core Facility (Institute of Medical Sciences, University of Aberdeen). RNA-sequencing was carried out at the University of Aberdeen Centre for Genome Enabled Biology and Medicine. Pancreas histology was performed by Dr Linda Davidson (Department of Histology, Aberdeen Royal Infirmary, NHS Grampian, Foresterhill Health Campus, Aberdeen, UK). This study was supported by the British Heart Foundation Intermediate Basic Research Fellowship FS/09/026 to N. Mody, RCUK fellowship to MD, EFSD/Lilly Programme Grant to MD and N. Mody, Tenovus Scotland grants G10/04 and G14/14 to N. Mody, University of Aberdeen Centre for Genome Enabled Biology and Medicine (CGEBM) PhD studentship to N. Morrice and Biotechnology and Biological Sciences Research Council studentship to GDM.Peer reviewedPublisher PD
NF-κB/Rel-Mediated Regulation of the Neural Fate in Drosophila
Two distinct roles are described for Dorsal, Dif and Relish, the three NF-κB/Rel proteins of Drosophila, in the development of the peripheral nervous system. First, these factors regulate transcription of scute during the singling out of sensory organ precursors from clusters of cells expressing the proneural genes achaete and scute. This effect is possibly mediated through binding sites for NF-κB/Rel proteins in a regulatory module of the scute gene required for maintenance of scute expression in precursors as well as repression in cells surrounding precursors. Second, genetic evidence suggests that the receptor Toll-8, Relish, Dif and Dorsal, and the caspase Dredd pathway are active over the entire imaginal disc epithelium, but Toll-8 expression is excluded from sensory organ precursors. Relish promotes rapid turnover of transcripts of the target genes scute and asense through an indirect, post-transcriptional mechanism. We propose that this buffering of gene expression levels serves to keep the neuro-epithelium constantly poised for neurogenesis
Circulating Fibroblast Growth Factor 21 Levels Are Closely Associated with Hepatic Fat Content: A Cross-Sectional Study
BACKGROUND AND AIMS: Fibroblasts growth factor 21 (FGF21), a liver-secreted endocrine factor involved in regulating glucose and lipid metabolism, has been shown to be elevated in patients with non-alcoholic fatty liver disease (NAFLD). This study aimed to evaluate the quantitative correlation between serum FGF21 level and hepatic fat content. METHODS: A total of 138 subjects (72 male and 66 female) aged from 18 to 65 years with abnormal glucose metabolism and B-ultrasonography diagnosed fatty liver were enrolled in the study. Serum FGF21 levels were determined by an in-house chemiluminescence immunoassay and hepatic fat contents were measured by proton magnetic resonance spectroscopy. RESULTS: Serum FGF21 increased progressively with the increase of hepatic fat content, but when hepatic fat content increased to the fourth quartile, FGF21 tended to decline. Serum FGF21 concentrations were positively correlated with hepatic fat content especially in subjects with mild/moderate hepatic steatosis (r = 0.276, p = 0.009). Within the range of hepatic steatosis from the first to third quartile, FGF21 was superior to any other traditional clinical markers including ALT to reflect hepatic fat content. When the patients with severe hepatic steatosis (the fourth quartile) were included, the quantitative correlation between FGF21 and hepatic fat content was weakened. CONCLUSIONS: Serum FGF21 was a potential biomarker to reflect the hepatic fat content in patients with mild or moderate NAFLD. In severe NAFLD patients, FGF21 concentration might decrease due to liver inflammation or injury
Fibroblast growth factor 21 reflects liver fat accumulation and dysregulation of signalling pathways in the liver of C57BL/6J mice
Fibroblast growth factor 21 (Fgf21) has emerged as a potential plasma marker to diagnose non-alcoholic fatty liver disease (NAFLD). To study the molecular processes underlying the association of plasma Fgf21 with NAFLD, we explored the liver transcriptome data of a mild NAFLD model of aging C57BL/6J mice at 12, 24, and 28 months of age. The plasma Fgf21 level significantly correlated with intrahepatic triglyceride content. At the molecular level, elevated plasma Fgf21 levels were associated with dysregulated metabolic and cancerrelated pathways. The up-regulated Fgf21 levels in NAFLD were implied to be a protective response against the NAFLD-induced adverse effects, e.g. lipotoxicity, oxidative stress and endoplasmic reticulum stress. An in vivo PPARα challenge demonstrated the dysregulation of PPARα signalling in the presence of NAFLD, which resulted in a stochastically increasing hepatic expression of Fgf21. Notably, elevated plasma Fgf21 was associated with declining expression of Klb, Fgf21’s crucial co-receptor, which suggests a resistance to Fgf21. Therefore, although liver fat accumulation is a benign stage of NAFLD, the elevated plasma Fgf21 likely indicated vulnerability to metabolic stressors that may contribute towards progression to end-stage NAFLD. In conclusion, plasma levels of Fgf21 reflect liver fat accumulation and dysregulation of metabolic pathways in the liver
Mono- versus polydrug abuse patterns among publicly funded clients
To examine patterns of mono- versus polydrug abuse, data were obtained from intake records of 69,891 admissions to publicly funded treatment programs in Tennessee between 1998 and 2004. While descriptive statistics were employed to report frequency and patterns of mono- and polydrug abuse by demographic variables and by study years, bivariate logistic regression was applied to assess the probability of being a mono- or polydrug abuser for a number of demographic variables. The researchers found that during the study period 51.3% of admissions reported monodrug abuse and 48.7% reported polydrug abuse. Alcohol, cocaine, and marijuana were the most commonly abused substances, both alone and in combination. Odds ratio favored polydrug abuse for all but one drug category–other drugs. Gender did not affect drug abuse patterns; however, admissions for African Americans and those living in urban areas exhibited higher probabilities of polydrug abuse. Age group also appeared to affect drug abuse patterns, with higher odds of monodrug abuse among minors and adults over 45 years old. The discernable prevalence of polydrug abuse suggests a need for developing effective prevention strategies and treatment plans specific to polydrug abuse
A Quantitative RNAi Screen for JNK Modifiers Identifies Pvr as a Novel Regulator of Drosophila Immune Signaling
Drosophila melanogaster responds to gram-negative bacterial challenges through the IMD pathway, a signal transduction cassette that is driven by the coordinated activities of JNK, NF-κB and caspase modules. While many modifiers of NF-κB activity were identified in cell culture and in vivo assays, the regulatory apparatus that determines JNK inputs into the IMD pathway is relatively unexplored. In this manuscript, we present the first quantitative screen of the entire genome of Drosophila for novel regulators of JNK activity in the IMD pathway. We identified a large number of gene products that negatively or positively impact on JNK activation in the IMD pathway. In particular, we identified the Pvr receptor tyrosine kinase as a potent inhibitor of JNK activation. In a series of in vivo and cell culture assays, we demonstrated that activation of the IMD pathway drives JNK-dependent expression of the Pvr ligands, Pvf2 and Pvf3, which in turn act through the Pvr/ERK MAP kinase pathway to attenuate the JNK and NF-κB arms of the IMD pathway. Our data illuminate a poorly understood arm of a critical and evolutionarily conserved innate immune response. Furthermore, given the pleiotropic involvement of JNK in eukaryotic cell biology, we believe that many of the novel regulators identified in this screen are of interest beyond immune signaling
Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies
Lamins are intermediate filament proteins that make up the nuclear lamina, a matrix underlying the nuclear membrane in all metazoan cells that is important for nuclear form and function. Vertebrate A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously. Drosophila has two lamin genes that are expressed in A- and B-type patterns, and it is assumed that similarly expressed lamins perform similar functions. However, Drosophila and vertebrate lamins are not orthologous, and their expression patterns evolved independently. It is therefore of interest to examine the effects of mutations in lamin genes. Mutations in the mammalian lamin A/C gene cause a range of diseases, collectively called laminopathies, that include muscular dystrophies and premature aging disorders. We compared the sequences of lamin genes from different species, and we have characterized larval and adult phenotypes in Drosophila bearing mutations in the lam gene that is expressed in the B-type pattern. Larvae move less and show subtle muscle defects, and surviving lam adults are flightless and walk like aged wild-type flies, suggesting that lam phenotypes might result from neuromuscular defects, premature aging, or both. The resemblance of Drosophila lam phenotypes to human laminopathies suggests that some lamin functions may be performed by differently expressed genes in flies and mammals. Such still-unknown functions thus would not be dependent on lamin gene expression pattern, suggesting the presence of other lamin functions that are expression dependent. Our results illustrate a complex interplay between lamin gene expression and function through evolution
Metabolically protective cytokines adiponectin and fibroblast growth factor-21 are increased by acute overfeeding in healthy humans
Context: Circulating levels of metabolically protective and adverse cytokines are altered in obese humans and rodent models. However, it is not clear whether these cytokines are altered rapidly in response to over-nutrition, or as a later consequence of the obese state. Methods: Forty sedentary healthy individuals were examined prior to and at 3 and 28 days of high fat overfeeding (+1250 kCal/day, 45% fat). Insulin sensitivity (hyperinsulinaemic-euglycaemic clamp), adiposity, serum levels of adiponectin and fibroblast growth factor-21 (FGF21), fatty acid binding protein-4 (FABP4), lipocalin-2 and plasminogen activator factor-1 (PAI1) were assessed. Statistics were performed by repeated measures ANOVA. Results: Overfeeding increased weight, body fat and liver fat, fasting glucose, insulin and reduced insulin sensitivity by clamp (all P <0.05). Metabolically protective cytokines, adiponectin and FGF21 were increased at day 3 of overfeeding (P ≤0.001) and adiponectin was also elevated at day 28 (P=0.001). FABP4, lipocalin-2 and PAI-1 were not changed by overfeeding at either time point. Conclusion: Metabolically protective cytokines, adiponectin and FGF-21, were increased by over nutrition and weight gain in healthy humans, despite increases in insulin resistance. We speculate that this was in attempt to maintain glucose homeostasis in a state of nutritional excess. PAI-I, FABP4 and lipocalin 2 were not altered by overfeeding suggesting that changes in these cytokines may be a later consequence of the obese state.Leonie K. Heilbronn, Lesley V. Campbell, Aimin Xu, Dorit Samocha-Bone
The myasthenic patient in crisis: an update of the management in Neurointensive Care Unit
Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission leading to generalized or localized muscle weakness due most frequently to the presence of autoantibodies against acetylcholine receptors in the postsynaptic motor end-plate. Myasthenic crisis (MC) is a complication of MG characterized by worsening muscle weakness, resulting in respiratory failure that requires intubation and mechanical ventilation. It also includes postsurgical patients, in whom exacerbation of muscle weakness from MG causes a delay in extubation. MC is a very important, serious, and reversible neurological emergency that affects 20–30% of the myasthenic patients, usually within the first year of illness and maybe the debut form of the disease. Most patients have a predisposing factor that triggers the crisis, generally an infection of the respiratory tract. Immunoglobulins, plasma exchange, and steroids are the cornerstones of immunotherapy. Today with the modern neurocritical care, mortality rate of MC is less than 5%
- …