54 research outputs found
Diarrheagenic enteroaggregative Escherichia coli causing urinary tract infection and bacteremia leading to sepsis
We report a case of a 55-year-old immunocompromised female who presented to the emergency department with severe diarrhea and vomiting following travel to the Philippines. Stool bacteriology revealed a mixed infection involving an enteropathogenic Escherichia coli and two distinct strains of enteroaggregative Escherichia coli (EAEC). During hospitalization, urine and blood culture tested positive for one of the diarrheagenic EAEC strains, necessitating urinary catheterization, intensive care, and antimicrobial treatment with trimethoprim-sulfamethoxazole, followed by meropenem. Although known to occasionally cause urinary tract infections, EAEC have not been previously associated with sepsis. Our report highlights the potential of EAEC to cause severe extraintestinal infections
Late pleistocene sedimentation history of the Shirshov Ridge, Bering Sea
The analysis of the lithology, grain-size distribution, clay minerals, and geochemistry of Upper
Pleistocene sediments from the submarine Shirshov Ridge (Bering Sea) showed that the main source area was
the Yukon–Tanana terrane of Central Alaska. The sedimentary materials were transported by the Yukon
River through Beringia up to the shelf break, where they were entrained by a strong northwestward-flowing
sea current. The lithological data revealed several pulses of ice-rafted debris deposition, roughly synchronous
with Heinrich events, and periods of weaker bottom-current intensity. Based on the geochemical results, we
distinguished intervals of an increase in paleoproductivity and extension of the oxygen minimum zone. The
results suggest that there were three stages of deposition driven by glacioeustatic sea-level fluctuations and
glacial cycles in Alaska
Different milk diets have substantial effects on the jejunal mucosal immune system of pre-weaning calves, as demonstrated by whole transcriptome sequencing
There is increasing evidence that nutrition during early mammalian life has a strong influence on health and performance in later life. However, there are conflicting data concerning the appropriate milk diet. This discrepancy particularly applies to ruminants, a group of mammals that switch from monogastric status to rumination during weaning. Little is known regarding how the whole genome expression pattern in the juvenile ruminant gut is affected by alternative milk diets. Thus, we performed a next-generation-sequencing-based holistic whole transcriptome analysis of the jejunum in male pre-weaned German Holstein calves fed diets with restricted or unlimited access to milk during the first 8 weeks of life. Both groups were provided hay and concentrate ad libitum. The analysis of jejunal mucosa samples collected 80 days after birth and four weeks after the end of the feeding regimes revealed 275 differentially expressed loci. While the differentially expressed loci comprised 67 genes encoding proteins relevant to metabolism or metabolic adaptation, the most distinct difference between the two groups was the consistently lower activation of the immune system in calves that experienced restricted milk access compared to calves fed milk ad libitum. In conclusion, different early life milk diets had significant prolonged effects on the intestinal immune system
Metabolome profiling in skeletal muscle to characterize metabolic alterations in over-conditioned cows during the periparturient period.
The transition from late gestation to early lactation is associated with extensive changes in metabolic, endocrine, and immune functions in dairy cows. Skeletal muscle plays an important role in maintaining the homeorhetic adaptation to the metabolic needs of lactation. The objective of this study was to characterize the skeletal muscle metabolome in the context of the metabolic changes that occur during the transition period in dairy cows with high (HBCS) versus normal body condition (NBCS). Fifteen weeks antepartum, 38 pregnant multiparous Holstein cows were assigned to 1 of 2 groups, which were fed differently to reach the targeted BCS and back fat thickness (BFT) until dry-off at -49 d before calving (HBCS: >3.75 and >1.4 cm; NBCS: <3.5 and <1.2 cm). During the dry period and the subsequent lactation, both groups were fed identical diets. The differences in both BCS and BFT were maintained throughout the study. The metabolome was characterized in skeletal muscle samples (semitendinosus muscle) collected on d -49, 3, 21, and 84 relative to calving using a targeted metabolomics approach (AbsolutelDQ p180 kit; Biocrates Life Sciences AG, Innsbruck, Austria), which allowed for the quantification of up to 188 metabolites from 6 different compound classes (acylcarnitines, amino acids, biogenic amines, glycerophospholipids, sphingolipids, and hexoses). On d -49, the concentrations of citrulline and hydroxytetradecadienyl-L-carnitine in muscle were higher in HBCS cows than in NBCS cows, but those of carnosine were lower. Over-conditioning did not affect the muscle concentrations of any of the metabolites on d 3. On d 21, the concentrations of phenylethylamine and linoleylcarnitine in muscle were lower in HBCS cows than in NBCS cows, and the opposite was true for lysophosphatidylcholine acyl C20:4. On d 84, the significantly changed metabolites were mainly long-chain (>C32) acyl-alkyl phosphatidylcholine and di-acyl phosphatidylcholine, along with 3 long-chain (>C16) sphingomyelin that were all lower in HBCS cows than in NBCS cows. These data contribute to a better understanding of the metabolic adaptation in skeletal muscle of dairy cows during the transition period, although the physiological significance and underlying molecular mechanisms responsible for the regulation of citrulline, hydroxytetradecadienyl-L-carnitine, carnosine, and phenylethylamine associated with over-conditioning are still elusive and warrant further investigation. The changes observed in muscle lysophosphatidylcholine and phosphatidylcholine concentrations may point to an alteration in phosphatidylcholine metabolism, probably resulting in an increase in membrane stiffness, which may lead to abnormalities in insulin signaling in the muscle of over-conditioned cows
Alterations of the acylcarnitine profiles in blood serum and in muscle from periparturient cows with normal or elevated body condition.
The objective of the current study was to characterize muscle and blood serum acylcarnitine (AcylCN) profiles and to determine the mRNA abundance of muscle carnitine acyltransferases in periparturient dairy cows with high (HBCS) and normal body condition (NBCS). Fifteen weeks antepartum, 38 pregnant multiparous Holstein cows were assigned to 2 groups that were fed differently to reach the targeted BCS and backfat thickness (BFT) until dry-off at -49 d before calving (HBCS: BCS >3.75 and BFT >1.4 cm; NBCS: <3.5 and <1.2 cm). Thereafter, both groups were fed identical diets. Blood samples and biopsies from the semitendinosus muscle were collected on d -49, 3, 21, and 84 relative to calving. Actual BCS at d -49 were 3.02 +/- 0.24 and 3.82 +/- 0.33 (mean +/- SD) for NBCS and HBCS, respectively. In both groups, serum profiles showed marked changes during the periparturient period, with decreasing concentrations of free carnitine and increasing concentrations of long-chain AcylCN. Compared with NBCS, HBCS had greater serum long-chain AcylCN in early lactation, which may point to an insufficient adaptation of their metabolism in response to the metabolic load of fatty acids around parturition. The muscle concentrations of C5-, C9-, C18:1-, and C18:2-AcylCN were lower and those of C14:2-AcylCN were greater in HBCS than in NBCS cows. The mRNA abundance of carnitine palmitoyltransferase (CPT)1, muscle isoform (CPT1b) and CPT2 increased from d -49 to early lactation (d 3, d 21), followed by a decline to nearly antepartum values by d 84; this change was not affected by group. In conclusion, over-conditioning around calving seems to be associated with mitochondrial overload, which can result in incomplete fatty acid oxidation in dairy cows
Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus overconditioned cows and pathway analysis.
This study aimed to investigate the differences in the metabolic profiles in serum of dairy cows that were normal or overconditioned when dried off for elucidating the pathophysiological reasons for the increased health disturbances commonly associated with overconditioning. Fifteen weeks antepartum, 38 multiparous Holstein cows were allocated to either a high body condition (HBCS; n = 19) group or a normal body condition (NBCS; n = 19) group and were fed different diets until dry-off to amplify the difference. The groups were also stratified for comparable milk yields (NBCS: 10,361 +/- 302 kg; HBCS: 10,315 +/- 437 kg; mean +/- standard deviation). At dry-off, the cows in the NBCS group (parity: 2.42 +/- 1.84; body weight: 665 +/- 64 kg) had a body condition score (BCS) <3.5 and backfat thickness (BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 +/- 1.67; body weight: 720 +/- 57 kg) had BCS >3.75 and BFT >1.4 cm. During the dry period and the subsequent lactation, both groups were fed identical diets but maintained the BCS and BFT differences. A targeted metabolomics (AbsoluteIDQ p180 kit, Biocrates Life Sciences AG, Innsbruck, Austria) approach was performed in serum samples collected on d -49, +3, +21, and +84 relative to calving for identifying and quantifying up to 188 metabolites from 6 different compound classes (acylcarnitines, AA, biogenic amines, glycerophospholipids, sphingolipids, and hexoses). The concentrations of 170 metabolites were above the limit of detection and could thus be used in this study. We used various machine learning (ML) algorithms (e.g., sequential minimal optimization, random forest, alternating decision tree, and naive Bayes-updatable) to analyze the metabolome data sets. The performance of each algorithm was evaluated by a leave-one-out cross-validation method. The accuracy of classification by the ML algorithms was lowest on d 3 compared with the other time points. Various ML methods (partial least squares discriminant analysis, random forest, information gain ranking) were then performed to identify those metabolites that were contributing most significantly to discriminating the groups. On d 21 after parturition, 12 metabolites (acetylcarnitine, hexadecanoyl-carnitine, hydroxyhexadecenoyl-carnitine, octadecanoyl-carnitine, octadecenoyl-carnitine, hydroxybutyryl-carnitine, glycine, leucine, phosphatidylcholine-diacyl-C40:3, trans-4-hydroxyproline, carnosine, and creatinine) were identified in this way. Pathway enrichment analysis showed that branched-chain AA degradation (before calving) and mitochondrial beta-oxidation of long-chain fatty acids along with fatty acid metabolism, purine metabolism, and alanine metabolism (after calving) were significantly enriched in HBCS compared with NBCS cows. Our results deepen the insights into the phenotype related to overconditioning from the preceding lactation and the pathophysiological sequelae such as increased lipolysis and ketogenesis and decreased feed intake
DELTASS - Disaster emergency logistic telemedicine advanced satellites system: Telemedical services for disaster emergencies
In the Disaster Emergency Logistic Telemedicine Advanced Satellites Systems (DELTASS) project, a disaster scenario was analysed and an appropriate telecommunication system for effective rescue measures for victims was set up. OP 2000 has designed various telemedical services for the support of the medical staff in a Mobile Field Hospital (MFH), which can be located in a disaster area by experts in a Reference Hospital (RH) located outside a disaster area. These services use a Workstation for Telemedical Applications via Satellite (WoTeSa) and Wavelet-based interactive Video Communication System (WinVicos) for the telemedical communication at the required quality, given the satellite bandwidth of 2 Mbit sec-1. Thus medical experts in the RH can support medical treatments in the MFH as well as a quick and reliable decision on to which hospital a victim/patient needs to be evacuated in order to get the best medical service (early triage)
- …