1,145 research outputs found

    Wiedemann-Franz violation in the vortex state of a d-wave superconductor

    Full text link
    We show that the Wiedemann-Franz law is violated in the vortex state of a d-wave superconductor at zero temperature. We use a semiclassical approach, which includes the Doppler shift on the quasiparticles as well as the Andreev scattering from a random distribution of vortices. We also show that the vertex corrections to the electrical conductivity due to the anisotropy of impurity scattering become unimportant in the presence of a sufficiently large magnetic field.Comment: To be published in Physica C as a proceeding of M2S-HTSC Rio 200

    Force calculation on walls and embedded particles in multiparticle collision dynamics simulations

    Get PDF
    Colloidal solutions posses a wide range of time and length scales, so that it is unfeasible to keep track of all of them within a single simulation. As a consequence some form of coarse-graining must be applied. In this work we use the Multi-Particle Collision Dynamics scheme. We describe a particular implementation of no-slip boundary conditions upon a solid surface, capable of providing correct force s on the solid bypassing the calculation of the velocity profile or the stre ss tensor in the fluid near the surface. As an application we measure the friction on a spherical particle, when it is placed in a bulk fluid and when it is confined in a slit. We show that the implementation of the no-slip boundary conditions leads to an enhanced Ensko g friction, which can be understood analytically. Because of the long-range nature of hydrodynamic interactions, the Stokes friction obtained from the simulations is sensitive of the simulation box size. We address this topic for the slit geometry, showing that that the dependence on the system size differs very much from what is expected in a 3D system, where periodic boundary conditions are used in all directions.Comment: To appear in Physical Review

    Transient magnetoconductivity of photoexcited electrons

    Full text link
    Transient magnetotransport of two-dimensional electrons with partially-inverted distribution excited by an ultrashort optical pulse is studied theoretically. The time-dependent photoconductivity is calculated for GaAs-based quantum wells by taking into account the relaxation of electron distribution caused by non-elastic electron-phonon interaction and the retardation of the response due to momentum relaxation and due to a finite capacitance of the sample. We predict large-amplitude transient oscillations of the current density and Hall field (Hall oscillations) with frequencies corresponding to magnetoplasmon range, which are initiated by the instability owing to the absolute negative conductivity effect.Comment: 21 pages, 6 fig

    Strategy for selection of elements for heat transfer enhancement

    Get PDF
    Abstract The present paper points out that the selection of elements for heat transfer enhancement in heat exchangers requires a methodology to make a direct comparison of the performances of heat exchanger surfaces with different elements. Methods of comparison used in the past are, in many respects, approximate and hence fail to predict accurately the relative performance of conventional heat exchanger surfaces operated with different heat exchanger elements. Owing to the direct use of the Colburn factor for performance assessment, these methods over-predict the relative performance of heat exchangers. In the present paper, a more consistent comparison method is presented and is demonstrated to work by comparison of the performance of an experimentally investigated pin fin heat exchanger with that of a smooth pipe heat exchanger. The method yields results that belong to the volume goodness factors group. It represents a practical approach, as it is applicable to all kinds of heat exchanger surfaces and does not require the conversion of the experimental data in terms of Nusselt number and friction factor for comparison purposes. The present work demonstrates that the suggested method can also be used for performance comparison of existing heat exchanger surfaces with available heat transfer and pressure loss data
    corecore