13 research outputs found

    Fluctuations in Cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila

    No full text
    AbstractThe precise cell-cycle alternation of S phase and mitosis is controlled by alternating competence of nuclei to respond to S-phase-inducing factors [1]. Nuclei acquire competence to replicate at the low point in cyclin-dependent kinase (Cdk) activities that follows mitotic destruction of cyclins. The elevation of Cdk activity late in G1 is thought to drive cells into S phase and to block replicated DNA from re-acquiring replication competence [2]. Whereas mitosis is normally required to eliminate the cyclins prior to another cycle of replication, experimental elimination of Cdk activity in G2 can restore competence to replicate [3–6]. Here, we examine the roles of Cdks in the endocycles of Drosophila[7]. In these cycles, rounds of discrete S phases without intervening mitoses result in polyteny. Cyclins A and B are lost in cells as they enter endocycles [8,9], and pulses of Cyclin E expression drive endocycle S phases [10–12]. To address whether oscillations of Cyclin E expression are required for endocycles, we expressed Cyclin E continuously in Drosophila salivary glands. Growth of the cells was severely inhibited, and a period of DNA replication was induced but further replication was inhibited. This replication inhibition could be overcome by the kinase inhibitor 6-dimethylaminopurine (6-DMAP), but not by expression of subunits of the transcription factor E2F. These results indicate that endocycle S phases require oscillations in Cdk activity, but, in contrast to oscillations in mitotic cells, these occur independently of mitosis

    Conserved Domains of the Nullo Protein Required for Cell-Surface Localization and Formation of Adherens Junctions

    No full text
    During cellularization, the Drosophila melanogaster embryo undergoes a transition from syncytial to cellular blastoderm with the de novo generation of a polarized epithelial sheet in the cortex of the embryo. This process couples cytokinesis with the establishment of apical, basal, and lateral membrane domains that are separated by two spatially distinct adherens-type junctions. In nullo mutant embryos, basal junctions fail to form at the onset of cellularization, leading to the failure of cleavage furrow invagination and the generation of multinucleate cells. Nullo is a novel protein that appears to stabilize the initial accumulation of cadherins and catenins as they form a mature basal junction. In this article we characterize a nullo homologue from D. virilis and identify conserved domains of Nullo that are required for basal junction formation. We also demonstrate that Nullo is a myristoylprotein and that the myristate group acts in conjunction with a cluster of basic amino acids to target Nullo to the plasma membrane. The membrane association of Nullo is required in vivo for its role in basal junction formation and for its ability to block apical junction formation when ectopically expressed during late cellularization

    ARL2 and BART Enter Mitochondria and Bind the Adenine Nucleotide Transporter

    No full text
    The ADP-ribosylation factor-like 2 (ARL2) GTPase and its binding partner binder of ARL2 (BART) are ubiquitously expressed in rodent and human tissues and are most abundant in brain. Both ARL2 and BART are predominantly cytosolic, but a pool of each was found associated with mitochondria in a protease-resistant form. ARL2 was found to lack covalent N-myristoylation, present on all other members of the ARF family, thereby preserving the N-terminal amphipathic α-helix as a potential mitochondrial import sequence. An overlay assay was developed to identify binding partners for the BART·ARL2·GTP complex and revealed a specific interaction with a protein in bovine brain mitochondria. Purification and partial microsequencing identified the protein as an adenine nucleotide transporter (ANT). The overlay assay was performed on mitochondria isolated from five different tissues from either wild-type or transgenic mice deleted for ANT1. Results confirmed that ANT1 is the predominant binding partner for the BART·ARL2·GTP complex and that the structurally homologous ANT2 protein does not bind the complex. Cardiac and skeletal muscle mitochondria from ant1(−)/ant1(−) mice had increased levels of ARL2, relative to that seen in mitochondria from wild-type animals. We conclude that the amount of ARL2 in mitochondria is subject to regulation via an ANT1-sensitive pathway in muscle tissues
    corecore