92 research outputs found

    Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body

    Get PDF
    Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis

    Signaling Pathways that Control Cell Proliferation

    Get PDF
    Cells decide to proliferate or remain quiescent using signaling pathways that link information about the cellular environment to the G1 phase of the cell cycle. Progression through G1 phase is controlled by pRB proteins, which function to repress the activity of E2F transcription factors in cells exiting mitosis and in quiescent cells. Phosphorylation of pRB proteins by the G1 cyclin-dependent kinases (CDKs) releases E2F factors, promoting the transition to S phase. CDK activity is primarily regulated by the binding of CDK catalytic subunits to cyclin partners and CDK inhibitors. Consequently, both mitogenic and antiproliferative signals exert their effects on cell proliferation through the transcriptional regulation and ubiquitin-dependent degradation of cyclins and CDK inhibitors

    Methylation of histone H4 lysine 20 by PR-Set7 ensures the integrity of late replicating sequence domains in Drosophila

    Get PDF
    The methylation state of lysine 20 on histone H4 (H4K20) has been linked to chromatin compaction, transcription, DNA repair and DNA replication. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7. PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which has been partially attributed to defects in origin selection and activation. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 and H4K20 methylation impact the replication program on a genomic scale. We employed genetic, cytological, and genomic approaches to better understand the role of PR-Set7 and H4K20 methylation in regulating DNA replication and genome stability in Drosophila cells. We find that deregulation of H4K20 methylation had no impact on origin activation throughout the genome. Instead, depletion of PR-Set7 and loss of H4K20me1 results in the accumulation of DNA damage and an ATR-dependent cell cycle arrest. Coincident with the ATR-dependent cell cycle arrest, we find increased DNA damage that is specifically limited to late replicating regions of the Drosophila genome, suggesting that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains

    Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage

    Get PDF
    Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage

    Endoreplication and polyploidy: insights into development and disease

    Get PDF
    Polyploid cells have genomes that contain multiples of the typical diploid chromosome number and are found in many different organisms. Studies in a variety of animal and plant developmental systems have revealed evolutionarily conserved mechanisms that control the generation of polyploidy and have recently begun to provide clues to its physiological function. These studies demonstrate that cellular polyploidy plays important roles during normal development and also contributes to human disease, particularly cancer

    Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail

    Get PDF
    The canonical histone proteins are encoded by replication-dependent genes and must rapidly reach high levels of expression during S phase. In metazoans the genes that encode these proteins produce mRNAs that, instead of being polyadenylated, contain a unique 3' end structure. By contrast, the synthesis of the variant, replication-independent histones, which are encoded by polyadenylated mRNAs, persists outside of S phase. Accurate positioning of both histone types in chromatin is essential for proper transcriptional regulation, the demarcation of heterochromatic boundaries and the epigenetic inheritance of gene expression patterns. Recent results suggest that the coordinated synthesis of replication-dependent and variant histone mRNAs is achieved by signals that affect formation of the 3' end of the replication-dependent histone mRNAs

    Loss of the Histone Pre-mRNA Processing Factor Stem-Loop Binding Protein in Drosophila Causes Genomic Instability and Impaired Cellular Proliferation

    Get PDF
    BACKGROUND:Metazoan replication-dependent histone mRNAs terminate in a conserved stem-loop structure rather than a polyA tail. Formation of this unique mRNA 3' end requires Stem-loop Binding Protein (SLBP), which directly binds histone pre-mRNA and stimulates 3' end processing. The 3' end stem-loop is necessary for all aspects of histone mRNA metabolism, including replication coupling, but its importance to organism fitness and genome maintenance in vivo have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS:In Drosophila, disruption of the Slbp gene prevents normal histone pre-mRNA processing and causes histone pre-mRNAs to utilize the canonical 3' end processing pathway, resulting in polyadenylated histone mRNAs that are no longer properly regulated. Here we show that Slbp mutants display genomic instability, including loss of heterozygosity (LOH), increased presence of chromosome breaks, tetraploidy, and changes in position effect variegation (PEV). During imaginal disc growth, Slbp mutant cells show defects in S phase and proliferate more slowly than control cells. CONCLUSIONS/SIGNIFICANCE:These data are consistent with a model in which changing the 3' end of histone mRNA disrupts normal replication-coupled histone mRNA biosynthesis and alters chromatin assembly, resulting in genomic instability, inhibition of cell proliferation, and impaired development

    Rbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis

    Get PDF
    The initiation and maintenance of G1 cell cycle arrest is a key feature of animal development. In th

    Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity

    Get PDF
    Histone H3 lysine 36 methylation (H3K36me) is thought to participate in a host of co-transcriptional regulatory events. To study the function of this residue independent from the enzymes that modify it, we used a β€˜histone replacement’ system in Drosophila to generate a non-modifiable H3K36 lysine-to-arginine (H3K36R) mutant. We observed global dysregulation of mRNA levels in H3K36R animals that correlates with the incidence of H3K36me3. Similar to previous studies, we found that mutation of H3K36 also resulted in H4 hyperacetylation. However, neither cryptic transcription initiation, nor alternative pre-mRNA splicing, contributed to the observed changes in expression, in contrast with previously reported roles for H3K36me. Interestingly, knockdown of the RNA surveillance nuclease, Xrn1, and members of the CCR4-Not deadenylase complex, restored mRNA levels for a class of downregulated, H3K36me3-rich genes. We propose a post-transcriptional role for modification of replication-dependent H3K36 in the control of metazoan gene expression

    Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis

    Get PDF
    The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3β€² processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3β€² end processing with transcription termination
    • …
    corecore