102 research outputs found
Experimental and Data-driven Workflows for Microstructure-based Damage Prediction
Materialermüdung ist die häufigste Ursache für mechanisches Versagen. Die Degradationsmechanismen, welche die Lebensdauer von Bauteilen bei vergleichsweise ausgeprägten zyklischen Belastungen bestimmen, sind gut bekannt. Bei Belastungen im makroskopisch elastischen Bereich hingegen, der (sehr) hochzyklischen Ermüdung, bestimmen die innere Struktur eines Werkstoffs und die Wechselwirkung kristallografischer Defekte die Lebensdauer. Unter diesen Umständen sind die inneren Degradationsphänomene auf der mikroskopischen Skala weitgehend reversibel und führen nicht zur Bildung kritischer Schädigungen, die kontinuierlich wachsen können. Allerdings sind einige Kornensembles in polykristallinen Metallen, je nach den lokalen mikrostrukturellen Gegebenheiten, anfällig für Schädigungsinitiierung, Rissbildung und -wachstum und wirken daher als Schwachstellen. Daher weisen Bauteile, die solchen Belastungen ausgesetzt sind, oft eine ausgeprägte Lebensdauerstreuung auf. Die Tatsache, dass ein umfassendes mechanistisches Verständnis für diese Degradationsprozesse in verschiedenen Werkstoffen nicht vorliegt, hat zur Folge, dass die derzeitigen Modellierungsbemühungen die mittlere Lebensdauer und ihre Varianz in der Regel nur mit unbefriedigender Genauigkeit vorhersagen. Dies wiederum erschwert die Bauteilauslegung und macht die Nutzung von Sicherheitsfaktoren während des Dimensionierungsprozesses erforderlich.
Abhilfe kann geschaffen werden, indem umfangreiche Daten zu Einflussfaktoren und deren Wirkung auf die Bildung initialer Ermüdungsschädigungen erhoben werden. Die Datenknappheit wirkt sich nach wie vor negativ auf Datenwissenschaftler und Modellierungsexperten aus, die versuchen, trotz geringer Stichprobengröße und unvollständigen Merkmalsräumen, mikrostrukturelle Abhängigkeiten abzuleiten, datengetriebene Vorhersagemodelle zu trainieren oder physikalische, regelbasierte Modelle zu parametrisieren. Die Tatsache, dass nur wenige kritische Schädigungen bezogen auf das gesamte Probenvolumen auftreten und die hochzyklische Ermüdung eine Vielzahl unterschiedlicher Abhängigkeiten aufweist, impliziert einige Anforderungen an die Datenerfassung und -verarbeitung. Am wichtigsten ist, dass die Messtechniken so empfindlich sind, dass nuancierte Schwankungen im Probenzustand erfasst werden können, dass die gesamte Routine effizient ist und dass die korrelative Mikroskopie räumliche Informationen aus verschiedenen Messungen miteinander verbindet.
Das Hauptziel dieser Arbeit besteht darin, einen Workflow zu etablieren, der den Datenmangel behebt, so dass die zukünftige virtuelle Auslegung von Komponenten effizienter, zuverlässiger und nachhaltiger gestaltet werden kann. Zu diesem Zweck wird in dieser Arbeit ein kombinierter experimenteller und datenverarbeitender Workflow vorgeschlagen, um multimodale Datensätze zu Ermüdungsschädigungen zu erzeugen. Der Schwerpunkt liegt dabei auf dem Auftreten von lokalen Gleitbändern, der Rissinitiierung und dem Wachstum mikrostrukturell kurzer Risse. Der Workflow vereint die Ermüdungsprüfung von mesoskaligen Proben, um die Empfindlichkeit der Schädigungsdetektion zu erhöhen, die ergänzende Charakterisierung, die multimodale Registrierung und Datenfusion der heterogenen Daten, sowie die bildverarbeitungsbasierte Schädigungslokalisierung und -bewertung. Mesoskalige Biegeresonanzprüfung ermöglicht das Erreichen des hochzyklischen Ermüdungszustands in vergleichsweise kurzen Zeitspannen bei gleichzeitig verbessertem Auflösungsvermögen der Schädigungsentwicklung. Je nach Komplexität der einzelnen Bildverarbeitungsaufgaben und Datenverfügbarkeit werden entweder regelbasierte Bildverarbeitungsverfahren oder Repräsentationslernen gezielt eingesetzt. So sorgt beispielsweise die semantische Segmentierung von Schädigungsstellen dafür, dass wichtige Ermüdungsmerkmale aus mikroskopischen Abbildungen extrahiert werden können. Entlang des Workflows wird auf einen hohen Automatisierungsgrad Wert gelegt. Wann immer möglich, wurde die Generalisierbarkeit einzelner Workflow-Elemente untersucht. Dieser Workflow wird auf einen ferritischen Stahl (EN 1.4003) angewendet. Der resultierende Datensatz verknüpft unter anderem große verzerrungskorrigierte Mikrostrukturdaten mit der Schädigungslokalisierung und deren zyklischer Entwicklung. Im Zuge der Arbeit wird der Datensatz wird im Hinblick auf seinen Informationsgehalt untersucht, indem detaillierte, analytische Studien zur einzelnen Schädigungsbildung durchgeführt werden. Auf diese Weise konnten unter anderem neuartige, quantitative Erkenntnisse über mikrostrukturinduzierte plastische Verformungs- und Rissstopmechanismen gewonnen werden. Darüber hinaus werden aus dem Datensatz abgeleitete kornweise Merkmalsvektoren und binäre Schädigungskategorien verwendet, um einen Random-Forest-Klassifikator zu trainieren und dessen Vorhersagegüte zu bewerten. Der vorgeschlagene Workflow hat das Potenzial, die Grundlage für künftiges Data Mining und datengetriebene Modellierung mikrostrukturempfindlicher Ermüdung zu legen. Er erlaubt die effiziente Erhebung statistisch repräsentativer Datensätze mit gleichzeitig hohem Informationsgehalt und kann auf eine Vielzahl von Werkstoffen ausgeweitet werden
Molecular Characterization of Isoniazid and Rifampin Resistance of Mycobacterium tuberculosis Clinical Isolates from Malatya, Turkey
Molecular characterization of drug resistance of Mycobacterium tuberculosis strains of different origins can generate information useful for developing molecular methods that are widely applicable for rapid drug resistance detection. Using DNA sequencing and allele-specific polymerase chain reaction (AS-PCR), we investigated genetic mutations associated with isoniazid (INH) and rifampin (RIF) resistance among 29 drug-resistant clinical isolates of M. tuberculosis collected from Malatya, Turkey, including 19 multi-drug-resistant (MDR) isolates. Point mutations were detected at codons 531, 516, 526, and 513 of the RNA polymerase β- subunit gene (rpoB) in 10 (47.6%), five (23.8%), three (14.3%), and three (14.3%) of the 21 RIF-resistant isolates, respectively. Of the five isolates having mutations in codon 516, three also had mutations at codon 527; one had a concurrent mutation at codon 572. Mutations at codon 315 of the catalase-peroxidase-encoding gene (katG) were found in 17 (63.0%) of the 27 INH-resistant isolates. Interestingly, the katG codon 315 mutation was observed at a much higher frequency in MDR isolates than in INH-mono-resistant isolates (∼79% vs. 25%). This study provided the first molecular characterization of INH and RIF resistance of M. tuberculosis clinical isolates from Eastern Turkey, and extended our knowledge of molecular basis of M. tuberculosis drug resistance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63182/1/mdr.2005.11.94.pd
Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning
The digitization of materials is the prerequisite for accelerating product development. However, technologically, this is only beneficial when reliability is maintained. This requires comprehension of the microstructure-driven fatigue damage mechanisms across scales. A substantial fraction of the lifetime for high performance materials is attributed to surface damage accumulation at the microstructural scale (e.g., extrusions and micro crack formation). Although, its modeling is impeded by a lack of comprehensive understanding of the related mechanisms. This makes statistical validation at the same scale by micromechanical experimentation a fundamental requirement. Hence, a large quantity of processed experimental data, which can only be acquired by automated experiments and data analyses, is crucial. Surface damage evolution is often accessed by imaging and subsequent image post-processing. In this work, we evaluated deep learning (DL) methodologies for semantic segmentation and different image processing approaches for quantitative slip trace characterization. Due to limited annotated data, a U-Net architecture was utilized. Three data sets of damage locations observed in scanning electron microscope (SEM) images of ferritic steel, martensitic steel, and copper specimens were prepared. In order to allow the developed models to cope with material-specific damage morphology and imaging-induced variance, a customized augmentation pipeline for the input images was developed. Material domain generalizability of ferritic steel and conjunct material trained models were tested successfully. Multiple image processing routines to detect slip trace orientation (STO) from the DL segmented extrusion areas were implemented and assessed. In conclusion, generalization to multiple materials has been achieved for the DL methodology, suggesting that extending it well beyond fatigue damage is feasible
Assessment of the Genetic Diversity of Mycobacterium tuberculosis esxA, esxH, and fbpB Genes among Clinical Isolates and Its Implication for the Future Immunization by New Tuberculosis Subunit Vaccines Ag85B-ESAT-6 and Ag85B-TB10.4
The effort to develop a tuberculosis (TB) vaccine more effective than the widely used Bacille Calmette-Guérin (BCG) has led to the development of two novel fusion protein subunit vaccines: Ag85B-ESAT-6 and Ag85B-TB10.4. Studies of these vaccines in animal models have revealed their ability to generate protective immune responses. Yet, previous work on TB fusion subunit vaccine candidate, Mtb72f, has suggested that genetic diversity among M. tuberculosis strains may compromise vaccine efficacy. In this study, we sequenced the esxA, esxH, and fbpB genes of M. tuberculosis encoding ESAT-6, TB10.4, and Ag85B proteins, respectively, in a sample of 88 clinical isolates representing 57 strains from Ark, USA, and 31 strains from Turkey, to assess the genetic diversity of the two vaccine candidates. We found no DNA polymorphism in esxA and esxH genes in the study sample and only one synonymous single nucleotide change (C to A) in fbpB gene among 39 (44.3%) of the 88 strains sequenced. These data suggest that it is unlikely that the efficacy of Ag85B-ESAT-6 and Ag85B-TB10.4 vaccines will be affected by the genetic diversity of M. tuberculosis population. Future studies should include a broader pool of M. tuberculosis strains to validate the current conclusion
Microstructure quality control of steels using deep learning
In quality control, microstructures are investigated rigorously to ensure
structural integrity, exclude the presence of critical volume defects, and
validate the formation of the target microstructure. For quenched,
hierarchically-structured steels, the morphology of the bainitic and
martensitic microstructures are of major concern to guarantee the reliability
of the material under service conditions. Therefore, industries conduct small
sample-size inspections of materials cross-sections through metallographers to
validate the needle morphology of such microstructures. We demonstrate
round-robin test results revealing that this visual grading is afflicted by
pronounced subjectivity despite the thorough training of personnel. Instead, we
propose a deep learning image classification approach that distinguishes steels
based on their microstructure type and classifies their needle length alluding
to the ISO 643 grain size assessment standard. This classification approach
facilitates the reliable, objective, and automated classification of
hierarchically structured steels. Specifically, an accuracy of 96% and roughly
91% is attained for the distinction of martensite/bainite subtypes and needle
length, respectively. This is achieved on an image dataset that contains
significant variance and labeling noise as it is acquired over more than ten
years from multiple plants, alloys, etchant applications, and light optical
microscopes by many metallographers (raters). Interpretability analysis gives
insights into the decision-making of these models and allows for estimating
their generalization capability
Materials fatigue prediction using graph neural networks on microstructure representations
The local prediction of fatigue damage within polycrystals in a high-cycle fatigue setting is a long-lasting and challenging task. It requires identifying grains tending to accumulate plastic deformation under cyclic loading. We address this task by transcribing ferritic steel microtexture and damage maps from experiments into a microstructure graph. Here, grains constitute graph nodes connected by edges whenever grains share a common boundary. Fatigue loading causes some grains to develop slip markings, which can evolve into microcracks and lead to failure. This data set enables applying graph neural network variants on the task of binary grain-wise damage classification. The objective is to identify suitable data representations and models with an appropriate inductive bias to learn the underlying damage formation causes. Here, graph convolutional networks yielded the best performance with a balanced accuracy of 0.72 and a F-score of 0.34, outperforming phenomenological crystal plasticity (+ 68%) and conventional machine learning (+ 17%) models by large margins. Further, we present an interpretability analysis that highlights the grains along with features that are considered important by the graph model for the prediction of fatigue damage initiation, thus demonstrating the potential of such techniques to reveal underlying mechanisms and microstructural driving forces in critical grain ensembles
Microstructure quality control of steels using deep learning
In quality control, microstructures are investigated rigorously to ensure structural integrity, exclude the presence of critical volume defects, and validate the formation of the target microstructure. For quenched, hierarchically-structured steels, the morphology of the bainitic and martensitic microstructures are of major concern to guarantee the reliability of the material under service conditions. Therefore, industries conduct small sample-size inspections of materials cross-sections through metallographers to validate the needle morphology of such microstructures. We demonstrate round-robin test results revealing that this visual grading is afflicted by pronounced subjectivity despite the thorough training of personnel. Instead, we propose a deep learning image classification approach that distinguishes steels based on their microstructure type and classifies their needle length alluding to the ISO 643 grain size assessment standard. This classification approach facilitates the reliable, objective, and automated classification of hierarchically structured steels. Specifically, an accuracy of 96% and roughly 91% is attained for the distinction of martensite/bainite subtypes and needle length, respectively. This is achieved on an image dataset that contains significant variance and labeling noise as it is acquired over more than 10 years from multiple plants, alloys, etchant applications, and light optical microscopes by many metallographers (raters). Interpretability analysis gives insights into the decision-making of these models and allows for estimating their generalization capability
Efficient reconstruction of prior austenite grains in steel from etched light optical micrographs using deep learning and annotations from correlative microscopy
The high-temperature austenite phase is the initial state of practically all
technologically relevant hot forming and heat treatment operations in steel
processing. The phenomena occurring in austenite, such as recrystallization or
grain growth, can have a decisive influence on the subsequent properties of the
material. After the hot forming or heat treatment process, however, the
austenite transforms into other microstructural constituents and information
on the prior austenite morphology are no longer directly accessible. There are
established methods available for reconstructing former austenite grain
boundaries via metallographic etching or electron backscatter diffraction
(EBSD) which both exhibit shortcomings. While etching is often difficult to
reproduce and strongly depend on the investigated steel’s alloying concept,
EBSD acquisition and reconstruction is rather time-consuming. But in fact,
though, light optical micrographs of steels contrasted with conventional Nital
etchant also contain information about the former austenite grains. However,
relevant features are not directly apparent or accessible with conventional
segmentation approaches. This work presents a deep learning (DL)
segmentation of prior austenite grains (PAG) from Nital etched light optical
micrographs. The basis for successful segmentation is a correlative
characterization from EBSD, light and scanning electron microscopy to
specify the ground truth required for supervised learning. The DL model
shows good and robust segmentation results. While the intersection over
union of 70% does not fully reflect the model performance due to the
inherent uncertainty in PAG estimation, a mean error of 6.1% in mean grain
size derived from the segmentation clearly shows the high quality of the result
Genotyping of Mycobacterium tuberculosis clinical isolates in two cities of Turkey: Description of a new family of genotypes that is phylogeographically specific for Asia Minor
BACKGROUND: Population-based bacterial genetics using repeated DNA loci is an efficient approach to study the biodiversity and phylogeographical structure of human pathogens, such as Mycobacterium tuberculosis, the agent of tuberculosis. Indeed large genetic diversity databases are available for this pathogen and are regularly updated. No population-based polymorphism data were yet available for M. tuberculosis in Turkey, at the crossroads of Eurasia. RESULTS: A total of 245 DNAs from Mycobacterium tuberculosis clinical isolates from tuberculosis patients residing in Turkey (Malatya n = 147 or Ankara n = 98) were genotyped by spoligotyping, a high-throughput genotyping method based on the polymorphism of the Direct Repeat locus. Thirty-three spoligotyping-defined clusters including 206 patients and 39 unique patterns were found. The ST41 cluster, as designated according to the international SpolDB3 database project, represented one fourth and when gathered to three genotypes, ST53, ST50 and ST284, one half of all the isolates. Out of 34 clinical isolates harboring ST41 which were further genotyped by IS6110 and by MIRU-VNTR typing, a typical 2-copy IS6110-RFLP pattern and a "215125113322" MIRU-VNTR pattern were observed among 21 clinical isolates. Further search in various databases confirms the likely Turkish-phylogeographical specificity of this clonal complex. CONCLUSION: We described a new phylogeographically-specific clone of M. tuberculosis, designated LAM7-TUR. Further investigations to assess its frequency within all regions of Turkey and its phylogeographical origin and phylogenetic position within the global M. tuberculosis phylogenetic tree will shed new light on its endemicity in Asia Minor
Addressing materials' microstructure diversity using transfer learning
Materials' microstructures are signatures of their alloying composition and
processing history. Therefore, microstructures exist in a wide variety. As
materials become increasingly complex to comply with engineering demands,
advanced computer vision (CV) approaches such as deep learning (DL) inevitably
gain relevance for quantifying microstrucutures' constituents from micrographs.
While DL can outperform classical CV techniques for many tasks, shortcomings
are poor data efficiency and generalizability across datasets. This is
inherently in conflict with the expense associated with annotating materials
data through experts and extensive materials diversity. To tackle poor domain
generalizability and the lack of labeled data simultaneously, we propose to
apply a sub-class of transfer learning methods called unsupervised domain
adaptation (UDA). These algorithms address the task of finding domain-invariant
features when supplied with annotated source data and unannotated target data,
such that performance on the latter distribution is optimized despite the
absence of annotations. Exemplarily, this study is conducted on a lath-shaped
bainite segmentation task in complex phase steel micrographs. Here, the domains
to bridge are selected to be different metallographic specimen preparations
(surface etchings) and distinct imaging modalities. We show that a
state-of-the-art UDA approach surpasses the na\"ive application of source
domain trained models on the target domain (generalization baseline) to a large
extent. This holds true independent of the domain shift, despite using little
data, and even when the baseline models were pre-trained or employed data
augmentation. Through UDA, mIoU was improved over generalization baselines from
82.2%, 61.0%, 49.7% to 84.7%, 67.3%, 73.3% on three target datasets,
respectively. This underlines this techniques' potential to cope with materials
variance.Comment: 20 pages, 7 figure
- …