3 research outputs found
Weight loss technology for people with treated type 2 diabetes: a randomized controlled trial
Background: The prevalence of type 2 diabetes is increasing in worldwide despite the development of new treatment methods. Aim of the study was to evaluate a weight loss method on body composition, glycemic, lipid and hormone profiles, blood pressure and reactive oxygen species in people with treated type 2 diabetes. Methods: A 24-week open, prospective, randomized, controlled clinical trial including 272 adult patients with
treated type 2 diabetes was performed. The patients were divided in two groups: Main group consisted of 208 patients who followed a method including a calorie restriction diet and optimal physical activity; Control included 64 patients who received conventional drug treatment with weight loss. Main Outcome Measures were weight loss, fasting glucose and 2-hour oral glucose tolerance test (OGTT), HbA1c. Secondary endpoints were blood pressure, lipid and insulin blood levels. Results: At 24 weeks, patients in Main weight lost between 8-18 kg (10–21%); their body mass index significantly decreased (-4.2 kg/m2) as well as their waist circumference (-13 cm) compared to Control. In Main weight loss was
achieved fatty mass reduction. In Main fasting glucose and OGTT, HbA1c, blood pressure, reactive oxygen species decreased significantly, whereas hemoglobin levels and heel bone mineral density increased. In Main blood insulin levels decreased by 72.0%, cortisol levels decreased by 40.7%, while testosterone levels in men increased by 2.4 times from baseline. The application of the weight loss method led to a decrease in drug doses leading to their complete withdrawal. Conclusions: The results of this study show the beneficial role of a weight loss method in improving glycemic, lipid and hormone profiles, electrolyte and biochemical indices, blood pressure, reactive oxygen species and bone
mineral density in patients with treated type 2 diabetes
Weight loss treatment for COVID-19 in patients with NCDs: a pilot prospective clinical trial
Abstract COVID-19 comorbid with noncommunicable chronic diseases (NCDs) complicates the diagnosis, treatment, and prognosis, and increases the mortality rate. The aim is to evaluate the effects of a restricted diet on clinical/laboratory inflammation and metabolic profile, reactive oxygen species (ROS), and body composition in patients with COVID-19 comorbid with NCDs. We conducted a 6-week open, pilot prospective controlled clinical trial. The study included 70 adult patients with COVID-19 comorbid with type 2 diabetes (T2D), hypertension, or nonalcoholic steatohepatitis (NASH). Interventions: a restricted diet including calorie restriction, hot water drinking, walking, and sexual self-restraint. Primary endpoints: COVID-19 diagnosis by detecting SARS-CoV-2 genome by RT-PCR; weight loss in Main group; body temperature; C-reactive protein. Secondary endpoints: the number of white blood cells; erythrocyte sedimentation rate; adverse effects during treatment; fasting blood glucose, glycosylated hemoglobin A1c (HbA1c), systolic/diastolic blood pressure (BP); blood lipids; ALT/AST, chest CT-scan. In Main group, patients with overweight lost weight from baseline (− 12.4%; P < 0.0001); 2.9% in Main group and 7.2% in Controls were positive for COVID-19 (RR: 0.41, CI: 0.04–4.31; P = 0.22) on the 14th day of treatment. Body temperature and C-reactive protein decreased significantly in Main group compared to Controls on day 14th of treatment (P < 0.025). Systolic/diastolic BP normalized (P < 0.025), glucose/lipids metabolism (P < 0.025); ALT/AST normalized (P < 0.025), platelets increased from baseline (P < 0.025), chest CT (P < 0.025) in Main group at 14 day of treatment. The previous antidiabetic, antihypertensive, anti-inflammatory, hepatoprotective, and other symptomatic medications were adequately decreased to completely stop during the weight loss treatment. Thus, the fast weight loss treatment may be beneficial for the COVID-19 patients with comorbid T2D, hypertension, and NASH over traditional medical treatment because, it improved clinical and laboratory/instrumental data on inflammation; glucose/lipid metabolism, systolic/diastolic BPs, and NASH biochemical outcomes, reactive oxygen species; and allowed patients to stop taking medications. Trial Registration: ClinicalTrials.gov NCT05635539 (02/12/2022): https://clinicaltrials.gov/ct2/show/NCT05635539?term=NCT05635539&draw=2&rank=1