8 research outputs found

    Impact of local recharge on arsenic concentrations in shallow aquifers inferred from the electromagnetic conductivity of soils in Araihazar, Bangladesh

    Get PDF
    The high-degree of spatial variability of dissolved As levels in shallow aquifers of the Bengal Basin has been well documented but the underlying mechanisms remain poorly understood. We compare here As concentrations measured in groundwater pumped from 4700 wells <22 m (75 ft) deep across a 25 km2 area of Bangladesh with variations in the nature of surface soils inferred from 18,500 measurements of frequency domain electromagnetic induction. A set of 14 hand auger cores recovered from the same area indicate that a combination of grain size and the conductivity of soil water dominate the electromagnetic signal. The relationship between pairs of individual EM conductivity and dissolved As measurements within a distance of 50 m is significant but highly scattered (r2 = 0.12; n = 614). Concentrations of As tend to be lower in shallow aquifers underlying sandy soils and higher below finer-grained and high conductivity soils. Variations in EM conductivity account for nearly half the variance of the rate of increase of As concentration with depth, however, when the data are averaged over a distance of 50 m (r2 = 0.50; n = 145). The association is interpreted as an indication that groundwater recharge through permeable sandy soils prevents As concentrations from rising in shallow reducing groundwater

    Chapter 14 Electrical Properties of Soils

    Get PDF
    This chapter discusses the electric and electromagnetic methods that are used to evaluate the electrical properties of soils. Electric techniques exploit the flow of a steady-state current in the subsurface, while electromagnetic methods rely on the phenomenon of electromagnetic induction and the wave character of the electromagnetic field. The electrical techniques and associated properties are: (a) spontaneous potential methods in which the formation of water resistivity is determined; (b) resistivity methods in which the apparent resistivity can be calculated using Wenner, Schlumberger, and dipole-dipole arrays; and (c) specific conductivity methods in which the soil-specific conductivity is calculated by incorporating in the analysis of soil geometric factors, such as fabric anisotropy, tortuosity, resistance to solid matrix, bulk fluid phase, and electric double layer. Various parameters that influence the measured electrical properties are also presented, such as the nature of the soil composition (particle size distribution, mineralogy), soil structure (porosity, pore size distribution, connectivity, and anisotropy), moisture content, temperature, concentration of dissolved species in the pore-solution, wet-dry cycles, age of contaminants, and mineral formation due to biodegradation. Finally, the extraction of aquifer hydraulic properties such as porosity and hydraulic conductivity, from the measured electrical properties is discussed
    corecore