197 research outputs found

    Spinor classification of the Weyl tensor in five dimensions

    Full text link
    We investigate the spinor classification of the Weyl tensor in five dimensions due to De Smet. We show that a previously overlooked reality condition reduces the number of possible types in the classification. We classify all vacuum solutions belonging to the most special algebraic type. The connection between this spinor and the tensor classification due to Coley, Milson, Pravda and Pravdov\'a is investigated and the relation between most of the types in each of the classifications is given. We show that the black ring is algebraically general in the spinor classification.Comment: 40 page

    Kerr-Schild spacetimes with (A)dS background

    Full text link
    General properties of Kerr-Schild spacetimes with (A)dS background in arbitrary dimension are studied. It is shown that the geodetic Kerr-Schild vector k is a multiple WAND of the spacetime. Einstein Kerr-Schild spacetimes with non-expanding k are shown to be of Weyl type N, while the expanding spacetimes are of type II or D. It is shown that this class of spacetimes obeys the optical constraint. This allows us to solve Sachs equation, determine r-dependence of boost weight zero components of the Weyl tensor and discuss curvature singularities.Comment: 17 pages, minor change

    An anisotropic distribution of spin vectors in asteroid families

    Full text link
    Current amount of ~500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. The remaining models are adopted from the DAMIT database or the literature. We revise the preliminary family membership identification by the HCM method according to several additional criteria - taxonomic type, color, albedo, maximum Yarkovsky semi-major axis drift and the consistency with the size-frequency distribution of each family, and consequently we remove interlopers. We then present the spin-vector distributions for eight asteroidal families. We use a combined orbital- and spin-evolution model to explain the observed spin-vector properties of objects among collisional families. In general, we observe for studied families similar trends in the (a_p, \beta) space: (i) larger asteroids are situated in the proximity of the center of the family; (ii) asteroids with \beta>0{\deg} are usually found to the right from the family center; (iii) on the other hand, asteroids with \beta<0{\deg} to the left from the center; (iv) majority of asteroids have large pole-ecliptic latitudes (|\beta|\gtrsim 30{\deg}); and finally (v) some families have a statistically significant excess of asteroids with \beta>0{\deg} or \beta<0{\deg}. Our numerical simulation of the long-term evolution of a collisional family is capable of reproducing well the observed spin-vector properties. Using this simulation, we also independently constrain the age of families Flora (1.0\pm0.5 Gyr) and Koronis (2.5-4 Gyr).Comment: Accepted for publication in A&A (September 16, 2013

    The Appearance and Disappearance of Ship Tracks on Large Spatial Scales

    Get PDF
    The 1-km advanced very high resolution radiometer observations from the morning, NOAA-12, and afternoon, NOAA-11, satellite passes over the coast of California during June 1994 are used to determine the altitudes, visible optical depths, and cloud droplet effective radii for low-level clouds. Comparisons are made between the properties of clouds within 50 km of ship tracks and those farther than 200 km from the tracks in order to deduce the conditions that are conducive to the appearance of ship tracks in satellite images. The results indicate that the low-level clouds must be sufficiently close to the surface for ship tracks to form. Ship tracks rarely appear in low-level clouds having altitudes greater than 1 km. The distributions of visible optical depths and cloud droplet effective radii for ambient clouds in which ship tracks are embedded are the same as those for clouds without ship tracks. Cloud droplet sizes and liquid water paths for low-level clouds do not constrain the appearance of ship tracks in the imagery. The sensitivity of ship tracks to cloud altitude appears to explain why the majority of ship tracks observed from satellites off the coast of California are found south of 358N. A small rise in the height of low-level clouds appears to explain why numerous ship tracks appeared on one day in a particular region but disappeared on the next, even though the altitudes of the low-level clouds were generally less than 1 km and the cloud cover was the same for both days. In addition, ship tracks are frequent when lowlevel clouds at altitudes below 1 km are extensive and completely cover large areas. The frequency of imagery pixels overcast by clouds with altitudes below 1 km is greater in the morning than in the afternoon and explains why more ship tracks are observed in the morning than in the afternoon. If the occurrence of ship tracks in satellite imagery data depends on the coupling of the clouds to the underlying boundary layer, then cloud-top altitude and the area of complete cloud cover by low-level clouds may be useful indices for this coupling.This work was supported in part by the Office of Naval Research and by the National Science Foundation through the Center for Clouds, Chemistry and Climate at the Scripps Institution of Oceanography, an NSF Science and Technology Center

    On higher dimensional Einstein spacetimes with a warped extra dimension

    Full text link
    We study a class of higher dimensional warped Einstein spacetimes with one extra dimension. These were originally identified by Brinkmann as those Einstein spacetimes that can be mapped conformally on other Einstein spacetimes, and have subsequently appeared in various contexts to describe, e.g., different braneworld models or warped black strings. After clarifying the relation between the general Brinkmann metric and other more specific coordinate systems, we analyze the algebraic type of the Weyl tensor of the solutions. In particular, we describe the relation between Weyl aligned null directions (WANDs) of the lower dimensional Einstein slices and of the full spacetime, which in some cases can be algebraically more special. Possible spacetime singularities introduced by the warp factor are determined via a study of scalar curvature invariants and of Weyl components measured by geodetic observers. Finally, we illustrate how Brinkmann's metric can be employed to generate new solutions by presenting the metric of spinning and accelerating black strings in five dimensional anti-de Sitter space.Comment: 14 pages, minor changes in the text, mainly in Section 2.

    Exact Black Holes and Universality in the Backreaction of non-linear Sigma Models with a potential in (A)dS4

    Full text link
    The aim of this paper is to construct accelerated, stationary and axisymmetric exact solutions of the Einstein theory with self interacting scalar fields in (A)dS4. To warm up, the backreaction of the (non)-minimally coupled scalar field is solved, the scalar field equations are integrated and all the potentials compatible with the metric ansatz and Einstein gravity are found. With these results at hand the non-linear sigma model is tackled. The scalar field Lagrangian is generic; neither the coupling to the curvature, neither the metric in the scalar manifold nor the potential, are fixed ab initio. The unique assumption in the analysis is the metric ansatz: it has the form of the most general Petrov type D vacuum solution of general relativity; it is a a cohomogeneity two Weyl rescaling of the Carter metric and therefore it has the typical Plebanski-Demianski form with two arbitrary functions of one variable and one arbitrary functions of two variables. It is shown, by an straightforward manipulation of the field equations, that the metric is completely integrable without necessity of specifiying anything in the scalar Lagrangian. This results in that the backreaction of the scalar fields, within this class of metrics, is universal. The metric functions generically show an explicit dependence on a dynamical exponent that allows to smoothly connect this new family of solutions with the actual Plebanski-Demianski spacetime. The remaining field equations imply that the scalar fields follow geodesics in the scalar manifold with an affine parameter given by a non-linear function of the spacetime coordinates and define the on-shell form of the potential plus a functional equation that it has to satisfy. Finally, a general family of (A)dS4 static hairy black holes is explicitly constructed and its properties are outlined.Comment: Several typos correcte

    Geodesics and Symmetries of Doubly-Spinning Black Rings

    Full text link
    This paper studies various properties of the Pomeransky-Sen'kov doubly-spinning black ring spacetime. I discuss the structure of the ergoregion, and then go on to demonstrate the separability of the Hamilton-Jacobi equation for null, zero energy geodesics, which exist in the ergoregion. These geodesics are used to construct geometrically motivated coordinates that cover the black hole horizon. Finally, I relate this weak form of separability to the existence of a conformal Killing tensor in a particular 4-dimensional spacetime obtained by Kaluza-Klein reduction, and show that a related conformal Killing-Yano tensor only exists in the singly-spinning case.Comment: Minor corrections/clarifications and references added, results of paper unchanged. Accepted for publication by Class. Quant. Grav. (26 pages, 5 figures

    Planetary Transits of the Trans-Atlantic Exoplanet Survey- Candidate TrES-1b

    Full text link
    The AAVSO compiled 10,560 CCD observations of the suspected exoplanet transit object TrES-1b covering seven complete transit windows, three windows of partial coverage, and coverage of baseline non-transit periods. Visual inspection of the light curves reveals the presence of slight humps at the egress points of some transits. A boot strap Monte Carlo simulation was applied to the data to confirm that the humps exist to a statistically significant degree. However, it does not rule out systemic effects which will be tested with campaigns in the 2005 observing season

    The Recently-Discovered Dwarf Nova System ASAS J002511+1217.2: A New WZ Sagittae Star

    Full text link
    The cataclysmic variable ASAS J002511+1217.2 was discovered in outburst by the All-Sky Automated Survey in September 2004, and intensively monitored by AAVSO observers through the following two months. Both photometry and spectroscopy indicate that this is a very short-period system. Clearly defined superhumps with a period of 0.05687 +/- 0.00001 days (1-sigma) are present during the superoutburst, 5 to 18 days following the ASAS detection. We observe a change in superhump profile similar to the transition to ``late superhumps'' observed in other short-period systems; the superhump period appears to increase slightly for a time before returning to the original value, with the resulting superhump phase offset by approximately half a period. We detect variations with a period of 0.05666 +/- 0.00003 days (1-sigma) during the four-day quiescent phase between the end of the main outburst and the single echo outburst. Weak variations having the original superhump period reappear during the echo and its rapid decline. Time-resolved spectroscopy conducted nearly 30 days after detection and well into the decline yields an orbital period measurement of 82 +/- 5 minutes. Both narrow and broad components are present in the emission line spectra, indicating the presence of multiple emission regions. The weight of the observational evidence suggests that ASAS J002511+1217.2 is a WZ Sge-type dwarf nova, and we discuss how this system fits into the WZ classification scheme.Comment: 24 pages, 11 figures, accepted to PASP; minor revision to add two authors and adjust text to match that of the published version. No adjustments to results or conclusion
    corecore