15 research outputs found

    New Perspectives for LVL Manufacturing from Wood of Heterogeneous Quality—Part 2: Modeling and Manufacturing of Variable Stiffness Beams

    Get PDF
    This paper presents a new strategy in the use of wood of heterogeneous quality for composing LVL products. The idea is to consider veneers representative of the resource variability and retain local stiffness information to control panel manufacturing fully. The placement of veneers is also no longer random as in the first part of this group of papers but optimized for the quality of veneers according to the requirement of bending stresses along the beam. In a four-point bending test arrangement, this means the high-quality veneer is concentrated in the center of the beam in the area between the loading points where the bending moments are the most important, and the low quality is located at the extremities. This initiates the creation of variable stiffness beams. This is driven by an algorithm developed and tested on representative veneer samples from the resource. Four LVL panels were manufactured by positioning the veneers in the same positions as in an analytical calculation model, which allowed the calculation of beam mechanical properties in four-point bending. The proposed optimization of LVL manufacturing from variable quality veneers should help for more efficient usage of forest resources. This optimization strategy showed notable gains for modeled and experimental mechanical properties, whether in terms of stiffness or strength. The analytical calculation of the local modulus of elasticity from modelized beams was satisfactory compared to the tests of the manufactured beams test results, allowing the reliability of the model for this property to be confirmed

    An insight into mechanical properties of heartwood and sapwood of large French Douglas-fir LVL

    Get PDF
    The French resource of large diameter Douglas fir is currently still growing, while these large diameter trees are complicated to process efficiently by the sawmilling industry. The rotary peeling process appeared to be particularly adapted as an alternative to the usual sawing. This primary processing method produces veneers used to make a wood engineered product material called Laminated Veneer Lumber (LVL). The manufacturing process of LVL enables the distribution of the resource defects, allowing for increased mechanical behaviour compared to the solid wood from which it comes from. The main objective of this study is to provide an insight into the principal Douglas-fir heartwood LVL mechanical properties such as longitudinal and shear moduli of elasticity, bending, shear and compressive strengths. Up to now, there was no study on LVL derived from this resource. This study focuses on heartwood because of its very interesting natural durability properties for constructive outdoor applications. Moreover, a comparison with structural timber properties and a comparable industrial engineering product, made of Norway spruce and called Kerto S was also achieved to place the material in terms of mechanical performance among the market. Globally, this Douglas-fir heartwood LVL showed high compressive and shear properties. Even though the bending properties were significantly lower than data from Douglas-fir LVL of the literature, they seemed appropriate for structural applications. A larger experimental campaign fully representative of the industrial process and dealing with larger samples will be needed to finally conclude on the characteristic values to be used in structural design

    New Perspectives for LVL Manufacturing from Wood of Heterogeneous Quality—Part. 1: Veneer Mechanical Grading Based on Online Local Wood Fiber Orientation Measurement

    Get PDF
    The grading of wood veneers according to their true mechanical potential is an important issue in the peeling industry. Unlike in the sawmilling industry, this activity does not currently estimate the local properties of production. The potential of the tracheid effect, which enables local fiber orientation measurement, has been widely documented for sawn products. A measuring instrument exploiting this technology and implemented on a peeling line was developed, enabling us to obtain the fiber orientation locally which, together with global density, allowed us to model the local elastic properties of each veneer. A sorting method using this data was developed and is presented here. It was applied to 286 veneers from several logs of French Douglas fir, and was compared to a widely used sorting method based on veneer appearance defects. The effectiveness of both grading approaches was quantified according to mechanical criteria. This study shows that the sorting method used (based on local fiber orientation and average density) allows for better theorical quality discrimination according to the mechanical potential. This article is the first in a series, with the overall aim of enhancing the use of heterogeneous wood veneers in the manufacturing of maximized-performance LVL by veneer grading and optimized positioning as well as material mechanical property modelization

    BENDING, SHEARING, AND COMPRESSION PROPERTIES OF FAST GROWING FRENCH DOUGLAS FIR LVL

    Get PDF
    The French resource of large diameter Douglas fir is currently keeping growing, while these large diameter trees are complicated to process efficiently by the sawmilling industry. The rotary peeling process appeared to be particularly adapted as an alternative to the usual sawing. This primary processing method produces veneers used to make a wood engineering product material called Laminated Veneer Lumber (LVL). The manufacturing process of LVL enables the distribution of the resource defects, allowing for increased mechanical behaviour compared to the solid wood from which it comes from. The main objective of this study is to present the principal Douglas-fir heartwood LVL mechanical properties such as longitudinal and shear moduli of elasticity, bending, shear and compressive strengths. Up to now, there were no study on LVL derived from this resource. This study focuses on heartwood because of its very interesting natural durability properties for constructive outdoor applications. Moreover, a comparison with structural timber properties was also achieved to place the material in terms of mechanical performance among the market. Globally, this LVL material showed high compressive and shear properties. Nevertheless, even though the bending properties were significantly lower than data from Douglas-fir LVL literature, they are still quite acceptable for structural applications

    Propriétés mécaniques en flexion de LVL de gros douglas

    Get PDF
    Selon un rapport rendu au SĂ©nat le 26 juin 2019, le vieillissement du patrimoine des ponts du rĂ©seau routier est un problĂšme Ă  traiter en France. Le remplacement progressif d’environ 10% de ces ouvrages est Ă  envisager dĂšs Ă  prĂ©sent. Une des solutions proposĂ©es Ă  la rĂ©gion Bourgogne-Franche-ComtĂ© est l’élaboration de ponts mixtes bois bĂ©ton. Efficaces, comparativement plus lĂ©gers, rapides de mise en Ɠuvre, plus Ă©cologiques et Ă©conomiques, ils permettent par ailleurs la valorisation d’essences locales dans des qualitĂ©s relativement basses. Cela est rendu possible par le choix d’un procĂ©dĂ© de premiĂšre transformation, le dĂ©roulage, permettant la composition d’un matĂ©riau multiplis composite appelĂ© lamibois, au comportement mĂ©canique augmentĂ© par rapport au bois massif dont il est issu. La thĂšse « DĂ©veloppement de produits lamellĂ©s issus du dĂ©roulage de douglas pour des ponts et autres solutions constructives mixtes bois-bĂ©ton collĂ©s », effectuĂ©e au LaBoMaP de Cluny, vise Ă  optimiser ce matĂ©riau dans la conception des poutres de tablier. Cela passe notamment par une rĂ©partition optimisĂ©e dans tout le matĂ©riau des dĂ©fauts tels que la nodositĂ© et la variation de pentes de fils. Cependant, avant toute Ă©tape d’optimisation, il est nĂ©cessaire d’étudier le comportement mĂ©canique du LVL sans plis croisĂ©s constituĂ© Ă  partir d’une ressource reprĂ©sentative du douglas français (100 m3 de bois transformĂ©s issus de 3 communes de CorrĂšze : Larfeuil, Ambrugeat et Neuvic d’Ussel). Il n’y avait jusqu’alors pas d’étude d’ampleur sur le LVL issu de cette ressource. Certains rĂ©sultats ont Ă©tĂ© prĂ©sentĂ©s aux assises France Douglas. Ce court article prĂ©sente les premiers rĂ©sultats d’essais de flexion quatre points sur chant de poutres de duramen de douglas selon deux configurations gĂ©omĂ©triques. Seule la configuration sur chant est testĂ©e car elle est la configuration prĂ©fĂ©rĂ©e dans son intĂ©gration par poutre Ă  une structure pont

    Ponts mixtes bois bĂ©ton collĂ©s: Etude de l’interface sous chargement thermo-hygromĂ©canique

    Get PDF
    Dans ce papier sont prĂ©sentĂ©s les premiers rĂ©sultats d’une Ă©tude globale visant Ă  consolider, puis proposer des rĂšgles de dimensionnement de ponts mixtes bois / bĂ©ton collĂ©s. La liaison collĂ©e est explorĂ©e de maniĂšre expĂ©rimentale avec des essais de cisaillement utilisant du lamellĂ© collĂ© et du LVL. Afin d’anticiper le vieillissement de cette liaison, des essais ont Ă©tĂ© rĂ©alisĂ©s Ă  diffĂ©rentes humiditĂ©s. Dans une deuxiĂšme partie, le dĂ©veloppement d’outils de simulation par Ă©lĂ©ments finis est prĂ©sentĂ©. La modĂ©lisation thermo-hydrique est appliquĂ©e sur des temps longs Ă  des sections correspondant aux nervures bois d’un pont. Les phĂ©nomĂšnes mĂ©caniques Ă  prendre en compte sont listĂ©s.Conseil RĂ©gional Bourgogne Franche-Comt

    New Perspectives for LVL Manufacturing from Wood of Heterogeneous Quality—Part 2: Modeling and Manufacturing of Variable Stiffness Beams

    Full text link
    This paper presents a new strategy in the use of wood of heterogeneous quality for composing LVL products. The idea is to consider veneers representative of the resource variability and retain local stiffness information to control panel manufacturing fully. The placement of veneers is also no longer random as in the first part of this group of papers but optimized for the quality of veneers according to the requirement of bending stresses along the beam. In a four-point bending test arrangement, this means the high-quality veneer is concentrated in the center of the beam in the area between the loading points where the bending moments are the most important, and the low quality is located at the extremities. This initiates the creation of variable stiffness beams. This is driven by an algorithm developed and tested on representative veneer samples from the resource. Four LVL panels were manufactured by positioning the veneers in the same positions as in an analytical calculation model, which allowed the calculation of beam mechanical properties in four-point bending. The proposed optimization of LVL manufacturing from variable quality veneers should help for more efficient usage of forest resources. This optimization strategy showed notable gains for modeled and experimental mechanical properties, whether in terms of stiffness or strength. The analytical calculation of the local modulus of elasticity from modelized beams was satisfactory compared to the tests of the manufactured beams test results, allowing the reliability of the model for this property to be confirmed

    DĂ©veloppement de produits LVL de douglas aux propriĂ©tĂ©s mĂ©caniques optimisĂ©es par l’exploitation de la mesure en ligne de l’orientation des fibres lors du dĂ©roulage

    Full text link
    Abstract: The grading of wood veneers according to their true mechanical potential is an importantissue in the peeling industry. Unlike in the sawmilling industry, this activity does not currentlyestimate the local properties of production. The potential of the tracheid effect, which enables localfiber orientation measurement, has been widely documented for sawn products. A measuring instrumentexploiting this technology and implemented on a peeling line was developed, enabling usto obtain the fiber orientation locally which, together with global density, allowed us to model thelocal elastic properties of each veneer. A sorting method using this data was developed and is presentedhere. It was applied to 286 veneers from several logs of French Douglas fir, and was comparedto a widely used sorting method based on veneer appearance defects. The effectiveness ofboth grading approaches was quantified according to mechanical criteria. This study shows that thesorting method used (based on local fiber orientation and average density) allows for better theoricalquality discrimination according to the mechanical potential. This article is the first in a series,with the overall aim of enhancing the use of heterogeneous wood veneers in the manufacturing ofmaximized‐performance LVL by veneer grading and optimized positioning as well as material mechanicalproperty modelization.Abstract: This paper presents a new strategy in the use of wood of heterogeneous quality forcomposing LVL products. The idea is to consider veneers representative of the resource variabilityand retain local stiffness information to control panel manufacturing fully. The placement of veneersis also no longer random as in the first part of this group of papers but optimized for the quality ofveneers according to the requirement of bending stresses along the beam. In a four-point bending testarrangement, this means the high-quality veneer is concentrated in the center of the beam in the areabetween the loading points where the bending moments are the most important, and the low qualityis located at the extremities. This initiates the creation of variable stiffness beams. This is driven by analgorithm developed and tested on representative veneer samples from the resource. Four LVL panelswere manufactured by positioning the veneers in the same positions as in an analytical calculationmodel, which allowed the calculation of beam mechanical properties in four-point bending. Theproposed optimization of LVL manufacturing from variable quality veneers should help for moreefficient usage of forest resources. This optimization strategy showed notable gains for modeledand experimental mechanical properties, whether in terms of stiffness or strength. The analyticalcalculation of the local modulus of elasticity from modelized beams was satisfactory compared to thetests of the manufactured beams test results, allowing the reliability of the model for this property tobe confirmed.La considĂ©ration du bois comme matĂ©riau de construction est une thĂ©matique plus que d’actualitĂ© dans un contexte incontournable de publication du 6e rapport d’évaluation du GIEC [1]. Le bois est un matĂ©riau organique, dont le processus de captage du CO2 atmosphĂ©rique nĂ©cessaire Ă  son accroissement lui permet un calcul de bilan carbone trĂšs Ă  son avantage lors de son utilisation comparĂ© autres matĂ©riaux usuels de construction type acier ou bĂ©ton. Il est par ailleurs moins dense, amenant Ă  des rĂ©sistances spĂ©cifiques plus importantes que les 2 matĂ©riaux, et rĂ©duisant ainsi l’énergie consommĂ©e lors de son transport. Par ailleurs, son extraction de son milieu naturel (sa rĂ©colte) et sa transformation, lorsqu’il est local, sont aussi plus simples et moins Ă©nergivores que pour ces deux matĂ©riaux.Si la construction bois continue de progresser lentement en terme de part de marchĂ©, la question de son approvisionnement doit continuellement se poser. La part de bois français utilisĂ©e est de l’ordre de 50 Ă  60 % selon l’EnquĂȘte nationale de la construction bois en 2018 [2]. L’évolution de la demande des clients ayant la volontĂ© de privilĂ©gier cette provenance est par ailleurs encourageante. Limiter la quantitĂ© d’énergie grise produite par un raccourcissement du circuit d’approvisionnement du matĂ©riau bois constitue un enjeu Ă©conomique et environnemental. La valorisation du bois local dans le secteur de la construction s’inscrit donc dans cette dynamique par une diminution des distances de transport de la matiĂšre premiĂšre mais aussi dans un cycle vertueux de maintien de l’activitĂ© dans des zones souvent rurales.Le douglas est une essence bien prĂ©sente sur le territoire français, favorisĂ©e par 2 grandes vagues de reboisement. La seconde, initiĂ©e Ă  partir des annĂ©es 1970 a fait naĂźtre un trĂšs grand volume sur pieds devenu mature, ayant atteint des diamĂštres leur valant la dĂ©nomination « gros bois » voir « trĂšs gros bois ». Le douglas possĂšde de bonnes propriĂ©tĂ©s mĂ©caniques et un duramen naturellement durable (Classe 3), ce qui lui permet d’ĂȘtre assez couramment utilisĂ© dans la construction en France par des Ă©lĂ©ments structurels massifs sans traitement additionnel typiquement pour les Ă©lĂ©ments de charpente. Cependant, la croissance bien avancĂ©e des gros bois s’accompagne d’inconvĂ©nients morphologiques rendant leur transformation dans les scieries dĂ©licate et amoindri ainsi leur rentabilitĂ©. Le dĂ©roulage du douglas, essence parmi les plus anciennement transformĂ©e par ce procĂ©dĂ© aux Etats-Unis, semblent un bon moyen de valoriser ces bois. Pourtant, il n’existe Ă  ce jour aucun site de dĂ©roulage de douglas en France ou en Europe. Les raisons ne sont pas technologiques liĂ©es Ă  une diffĂ©rence de propriĂ©tĂ©s supposĂ©es du douglas d’un cĂŽtĂ© ou de l’autre de l’Atlantique mais plutĂŽt historique et Ă©conomique. D’aprĂšs, les travaux menĂ©es par RĂ©my Frayssinhes [3] au LaBoMaP, les paramĂštres recommandĂ©es pour dĂ©rouler le douglas Français (gĂ©omĂ©trie des outils, tempĂ©rature d’étuvage, paramĂštres de coupe) sont comparables Ă  ceux couramment utilisĂ©s par les dĂ©rouleurs nord-amĂ©ricains pour peu que leurs sylvicultures ait Ă©tĂ© comparables. Cette thĂšse s’inscrit en aval des questions scientifiques liĂ©es Ă  la transformation et se focalise sur l’emploi des placages issus de gros bois de douglas dans un matĂ©riau composite lamellaire : le LVL (Laminated Veneer Lumber) ou lamibois en français

    Development of Douglas fir LVL products with optimized mechanical properties by exploiting online measurement of fiber orientation during rotary peeling process

    Full text link
    La considĂ©ration du bois comme matĂ©riau de construction est une thĂ©matique plus que d’actualitĂ© dans un contexte incontournable de publication du 6e rapport d’évaluation du GIEC [1]. Le bois est un matĂ©riau organique, dont le processus de captage du CO2 atmosphĂ©rique nĂ©cessaire Ă  son accroissement lui permet un calcul de bilan carbone trĂšs Ă  son avantage lors de son utilisation comparĂ© autres matĂ©riaux usuels de construction type acier ou bĂ©ton. Il est par ailleurs moins dense, amenant Ă  des rĂ©sistances spĂ©cifiques plus importantes que les 2 matĂ©riaux, et rĂ©duisant ainsi l’énergie consommĂ©e lors de son transport. Par ailleurs, son extraction de son milieu naturel (sa rĂ©colte) et sa transformation, lorsqu’il est local, sont aussi plus simples et moins Ă©nergivores que pour ces deux matĂ©riaux.Si la construction bois continue de progresser lentement en terme de part de marchĂ©, la question de son approvisionnement doit continuellement se poser. La part de bois français utilisĂ©e est de l’ordre de 50 Ă  60 % selon l’EnquĂȘte nationale de la construction bois en 2018 [2]. L’évolution de la demande des clients ayant la volontĂ© de privilĂ©gier cette provenance est par ailleurs encourageante. Limiter la quantitĂ© d’énergie grise produite par un raccourcissement du circuit d’approvisionnement du matĂ©riau bois constitue un enjeu Ă©conomique et environnemental. La valorisation du bois local dans le secteur de la construction s’inscrit donc dans cette dynamique par une diminution des distances de transport de la matiĂšre premiĂšre mais aussi dans un cycle vertueux de maintien de l’activitĂ© dans des zones souvent rurales.Le douglas est une essence bien prĂ©sente sur le territoire français, favorisĂ©e par 2 grandes vagues de reboisement. La seconde, initiĂ©e Ă  partir des annĂ©es 1970 a fait naĂźtre un trĂšs grand volume sur pieds devenu mature, ayant atteint des diamĂštres leur valant la dĂ©nomination « gros bois » voir « trĂšs gros bois ». Le douglas possĂšde de bonnes propriĂ©tĂ©s mĂ©caniques et un duramen naturellement durable (Classe 3), ce qui lui permet d’ĂȘtre assez couramment utilisĂ© dans la construction en France par des Ă©lĂ©ments structurels massifs sans traitement additionnel typiquement pour les Ă©lĂ©ments de charpente. Cependant, la croissance bien avancĂ©e des gros bois s’accompagne d’inconvĂ©nients morphologiques rendant leur transformation dans les scieries dĂ©licate et amoindri ainsi leur rentabilitĂ©. Le dĂ©roulage du douglas, essence parmi les plus anciennement transformĂ©e par ce procĂ©dĂ© aux Etats-Unis, semblent un bon moyen de valoriser ces bois. Pourtant, il n’existe Ă  ce jour aucun site de dĂ©roulage de douglas en France ou en Europe. Les raisons ne sont pas technologiques liĂ©es Ă  une diffĂ©rence de propriĂ©tĂ©s supposĂ©es du douglas d’un cĂŽtĂ© ou de l’autre de l’Atlantique mais plutĂŽt historique et Ă©conomique. D’aprĂšs, les travaux menĂ©es par RĂ©my Frayssinhes [3] au LaBoMaP, les paramĂštres recommandĂ©es pour dĂ©rouler le douglas Français (gĂ©omĂ©trie des outils, tempĂ©rature d’étuvage, paramĂštres de coupe) sont comparables Ă  ceux couramment utilisĂ©s par les dĂ©rouleurs nord-amĂ©ricains pour peu que leurs sylvicultures ait Ă©tĂ© comparables. Cette thĂšse s’inscrit en aval des questions scientifiques liĂ©es Ă  la transformation et se focalise sur l’emploi des placages issus de gros bois de douglas dans un matĂ©riau composite lamellaire : le LVL (Laminated Veneer Lumber) ou lamibois en français.Abstract: The grading of wood veneers according to their true mechanical potential is an importantissue in the peeling industry. Unlike in the sawmilling industry, this activity does not currentlyestimate the local properties of production. The potential of the tracheid effect, which enables localfiber orientation measurement, has been widely documented for sawn products. A measuring instrumentexploiting this technology and implemented on a peeling line was developed, enabling usto obtain the fiber orientation locally which, together with global density, allowed us to model thelocal elastic properties of each veneer. A sorting method using this data was developed and is presentedhere. It was applied to 286 veneers from several logs of French Douglas fir, and was comparedto a widely used sorting method based on veneer appearance defects. The effectiveness ofboth grading approaches was quantified according to mechanical criteria. This study shows that thesorting method used (based on local fiber orientation and average density) allows for better theoricalquality discrimination according to the mechanical potential. This article is the first in a series,with the overall aim of enhancing the use of heterogeneous wood veneers in the manufacturing ofmaximized‐performance LVL by veneer grading and optimized positioning as well as material mechanicalproperty modelization.Abstract: This paper presents a new strategy in the use of wood of heterogeneous quality forcomposing LVL products. The idea is to consider veneers representative of the resource variabilityand retain local stiffness information to control panel manufacturing fully. The placement of veneersis also no longer random as in the first part of this group of papers but optimized for the quality ofveneers according to the requirement of bending stresses along the beam. In a four-point bending testarrangement, this means the high-quality veneer is concentrated in the center of the beam in the areabetween the loading points where the bending moments are the most important, and the low qualityis located at the extremities. This initiates the creation of variable stiffness beams. This is driven by analgorithm developed and tested on representative veneer samples from the resource. Four LVL panelswere manufactured by positioning the veneers in the same positions as in an analytical calculationmodel, which allowed the calculation of beam mechanical properties in four-point bending. Theproposed optimization of LVL manufacturing from variable quality veneers should help for moreefficient usage of forest resources. This optimization strategy showed notable gains for modeledand experimental mechanical properties, whether in terms of stiffness or strength. The analyticalcalculation of the local modulus of elasticity from modelized beams was satisfactory compared to thetests of the manufactured beams test results, allowing the reliability of the model for this property tobe confirmed

    DĂ©veloppement de produits LVL de douglas aux propriĂ©tĂ©s mĂ©caniques optimisĂ©es par l’exploitation de la mesure en ligne de l’orientation des fibres lors du dĂ©roulage

    Full text link
    Abstract: The grading of wood veneers according to their true mechanical potential is an importantissue in the peeling industry. Unlike in the sawmilling industry, this activity does not currentlyestimate the local properties of production. The potential of the tracheid effect, which enables localfiber orientation measurement, has been widely documented for sawn products. A measuring instrumentexploiting this technology and implemented on a peeling line was developed, enabling usto obtain the fiber orientation locally which, together with global density, allowed us to model thelocal elastic properties of each veneer. A sorting method using this data was developed and is presentedhere. It was applied to 286 veneers from several logs of French Douglas fir, and was comparedto a widely used sorting method based on veneer appearance defects. The effectiveness ofboth grading approaches was quantified according to mechanical criteria. This study shows that thesorting method used (based on local fiber orientation and average density) allows for better theoricalquality discrimination according to the mechanical potential. This article is the first in a series,with the overall aim of enhancing the use of heterogeneous wood veneers in the manufacturing ofmaximized‐performance LVL by veneer grading and optimized positioning as well as material mechanicalproperty modelization.Abstract: This paper presents a new strategy in the use of wood of heterogeneous quality forcomposing LVL products. The idea is to consider veneers representative of the resource variabilityand retain local stiffness information to control panel manufacturing fully. The placement of veneersis also no longer random as in the first part of this group of papers but optimized for the quality ofveneers according to the requirement of bending stresses along the beam. In a four-point bending testarrangement, this means the high-quality veneer is concentrated in the center of the beam in the areabetween the loading points where the bending moments are the most important, and the low qualityis located at the extremities. This initiates the creation of variable stiffness beams. This is driven by analgorithm developed and tested on representative veneer samples from the resource. Four LVL panelswere manufactured by positioning the veneers in the same positions as in an analytical calculationmodel, which allowed the calculation of beam mechanical properties in four-point bending. Theproposed optimization of LVL manufacturing from variable quality veneers should help for moreefficient usage of forest resources. This optimization strategy showed notable gains for modeledand experimental mechanical properties, whether in terms of stiffness or strength. The analyticalcalculation of the local modulus of elasticity from modelized beams was satisfactory compared to thetests of the manufactured beams test results, allowing the reliability of the model for this property tobe confirmed.La considĂ©ration du bois comme matĂ©riau de construction est une thĂ©matique plus que d’actualitĂ© dans un contexte incontournable de publication du 6e rapport d’évaluation du GIEC [1]. Le bois est un matĂ©riau organique, dont le processus de captage du CO2 atmosphĂ©rique nĂ©cessaire Ă  son accroissement lui permet un calcul de bilan carbone trĂšs Ă  son avantage lors de son utilisation comparĂ© autres matĂ©riaux usuels de construction type acier ou bĂ©ton. Il est par ailleurs moins dense, amenant Ă  des rĂ©sistances spĂ©cifiques plus importantes que les 2 matĂ©riaux, et rĂ©duisant ainsi l’énergie consommĂ©e lors de son transport. Par ailleurs, son extraction de son milieu naturel (sa rĂ©colte) et sa transformation, lorsqu’il est local, sont aussi plus simples et moins Ă©nergivores que pour ces deux matĂ©riaux.Si la construction bois continue de progresser lentement en terme de part de marchĂ©, la question de son approvisionnement doit continuellement se poser. La part de bois français utilisĂ©e est de l’ordre de 50 Ă  60 % selon l’EnquĂȘte nationale de la construction bois en 2018 [2]. L’évolution de la demande des clients ayant la volontĂ© de privilĂ©gier cette provenance est par ailleurs encourageante. Limiter la quantitĂ© d’énergie grise produite par un raccourcissement du circuit d’approvisionnement du matĂ©riau bois constitue un enjeu Ă©conomique et environnemental. La valorisation du bois local dans le secteur de la construction s’inscrit donc dans cette dynamique par une diminution des distances de transport de la matiĂšre premiĂšre mais aussi dans un cycle vertueux de maintien de l’activitĂ© dans des zones souvent rurales.Le douglas est une essence bien prĂ©sente sur le territoire français, favorisĂ©e par 2 grandes vagues de reboisement. La seconde, initiĂ©e Ă  partir des annĂ©es 1970 a fait naĂźtre un trĂšs grand volume sur pieds devenu mature, ayant atteint des diamĂštres leur valant la dĂ©nomination « gros bois » voir « trĂšs gros bois ». Le douglas possĂšde de bonnes propriĂ©tĂ©s mĂ©caniques et un duramen naturellement durable (Classe 3), ce qui lui permet d’ĂȘtre assez couramment utilisĂ© dans la construction en France par des Ă©lĂ©ments structurels massifs sans traitement additionnel typiquement pour les Ă©lĂ©ments de charpente. Cependant, la croissance bien avancĂ©e des gros bois s’accompagne d’inconvĂ©nients morphologiques rendant leur transformation dans les scieries dĂ©licate et amoindri ainsi leur rentabilitĂ©. Le dĂ©roulage du douglas, essence parmi les plus anciennement transformĂ©e par ce procĂ©dĂ© aux Etats-Unis, semblent un bon moyen de valoriser ces bois. Pourtant, il n’existe Ă  ce jour aucun site de dĂ©roulage de douglas en France ou en Europe. Les raisons ne sont pas technologiques liĂ©es Ă  une diffĂ©rence de propriĂ©tĂ©s supposĂ©es du douglas d’un cĂŽtĂ© ou de l’autre de l’Atlantique mais plutĂŽt historique et Ă©conomique. D’aprĂšs, les travaux menĂ©es par RĂ©my Frayssinhes [3] au LaBoMaP, les paramĂštres recommandĂ©es pour dĂ©rouler le douglas Français (gĂ©omĂ©trie des outils, tempĂ©rature d’étuvage, paramĂštres de coupe) sont comparables Ă  ceux couramment utilisĂ©s par les dĂ©rouleurs nord-amĂ©ricains pour peu que leurs sylvicultures ait Ă©tĂ© comparables. Cette thĂšse s’inscrit en aval des questions scientifiques liĂ©es Ă  la transformation et se focalise sur l’emploi des placages issus de gros bois de douglas dans un matĂ©riau composite lamellaire : le LVL (Laminated Veneer Lumber) ou lamibois en français
    corecore