83 research outputs found

    Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition

    Full text link
    As the glass (in molecular fluids\cite{Donth}) or the jamming (in colloids and grains\cite{LiuNature1998}) transitions are approached, the dynamics slow down dramatically with no marked structural changes. Dynamical heterogeneity (DH) plays a crucial role: structural relaxation occurs through correlated rearrangements of particle ``blobs'' of size Ο\xi\cite{WeeksScience2000,DauchotPRL2005,Glotzer,Ediger}. On approaching these transitions, Ο\xi grows in glass-formers\cite{Glotzer,Ediger}, colloids\cite{WeeksScience2000,BerthierScience2005}, and driven granular materials\cite{KeysNaturePhys2007} alike, strengthening the analogies between the glass and the jamming transitions. However, little is known yet on the behavior of DH very close to dynamical arrest. Here, we measure in colloids the maximum of a ``dynamical susceptibility'', χ∗\chi^*, whose growth is usually associated to that of Ο\xi\cite{LacevicPRE}. χ∗\chi^* initially increases with volume fraction ϕ\phi, as in\cite{KeysNaturePhys2007}, but strikingly drops dramatically very close to jamming. We show that this unexpected behavior results from the competition between the growth of Ο\xi and the reduced particle displacements associated with rearrangements in very dense suspensions, unveiling a richer-than-expected scenario.Comment: 1st version originally submitted to Nature Physics. See the Nature Physics website fro the final, published versio

    Mars Regolith Simulant Ameliorated by Compost as In Situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects

    Get PDF
    Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate’s fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova¼) were chosen to be cultivated in four dierent mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use eciency and quality traits of lettuce. In particular, red Salanova¼ showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture

    Potentially toxic element availability and risk assessment of cadmium dietary exposure after repeated croppings of brassica juncea in a contaminated agricultural soil

    Get PDF
    Phytoextraction of potentially toxic elements (PTEs) is eco-friendly and cost-effective for remediating agricultural contaminated soils, but plants can only take up bioavailable forms of PTEs, thus meaning that bioavailability is the key for the feasibility of this technique. With the aims to assess the phytoextraction efficiency on an agricultural soil contaminated by Cr, Zn, Cd, and Pb and the changes induced by plants in PTE bioavailability and in human health risk due to dietary exposure, in this work we carried out a mesocosm experiment with three successive croppings of Brassica juncea, each followed by Rocket salad as bioindicator. Brassica juncea extracted more Zn and Cd than Cr and Pb, significantly reducing, after three repeated croppings, the bioavailable element concentrations in soil as a result of plant uptake and soil pH changes. For Cd, this reduction did not bring the bioavailable amounts obtained by soil extraction with NH4NO3 below the trigger value of 0.1 mg kg−1 set by some European countries. Nevertheless, the Hazard Quotient for Cd in Rocket salad decreased across three repeated croppings of Brassica juncea. This indicated the beginning of a re-equilibration process between soil PTE forms of different bioavailability, that are in a dynamic equilibrium, thus stressing the need to monitor the possible regeneration of the most readily bioavailable pool

    On the rigidity of a hard sphere glass near random close packing

    Full text link
    We study theoretically and numerically the microscopic cause of the mechanical stability of hard sphere glasses near their maximum packing. We show that, after coarse-graining over time, the hard sphere interaction can be described by an effective potential which is exactly logarithmic at the random close packing ϕc\phi_c. This allows to define normal modes, and to apply recent results valid for elastic networks: mechanical stability is a non-local property of the packing geometry, and is characterized by some length scale l∗l^* which diverges at ϕc\phi_c [1, 2]. We compute the scaling of the bulk and shear moduli near ϕc\phi_c, and speculate on the possible implications of these results for the glass transition.Comment: 7 pages, 4 figures. Figure 4 had a wrong unit in abscissa, which was correcte

    The effect of novel biodegradable films on agronomic performance of zucchini squash grown under open-field and greenhouse conditions

    Get PDF
    The soil mulching is an important agricultural practice for increasing crop productivity and earliness. Mulching can be made with natural or synthetic materials. The common films being used these days are usually made of low density polyethylene (LDPE), but its disposal can represent a serious environmental and economic problem. The biodegradable mulching can overcome these problems. Two experiments were carried out comparing the effects of biodegradable and LDPE mulching films on yield and quality of zucchini (Cucurbita pepo L.) grown in two environments (open-field vs. greenhouse). In both the environments a randomized complete block design was adopted. The treatments composed of no-mulched crop (control), soil covered by 15 microns black biodegradable film (MB15) and soil covered by 50 microns black LDPE film. The results showed that MB15 was able to maintain discrete technical proprieties until the end of cycle, especially in greenhouse, assuring a sufficient heating of soil, similar to LDPE. The soil heating promoted crop development. Furthermore, earliness was increased (84 in greenhouse vs. 99 days in open air) in greenhouse. The early production of zucchini grown on MB15 was similar to the one in LDPE production in greenhouse. The total marketable yield of plants grown on both films was not different but it was lower in open air. The biodegradable film significantly improved fruits quality, with higher values of firmness and total soluble solid than fruits grown on LDPE

    Heterogeneous Dynamics, Marginal Stability and Soft Modes in Hard Sphere Glasses

    Full text link
    In a recent publication we established an analogy between the free energy of a hard sphere system and the energy of an elastic network [1]. This result enables one to study the free energy landscape of hard spheres, in particular to define normal modes. In this Letter we use these tools to analyze the activated transitions between meta-bassins, both in the aging regime deep in the glass phase and near the glass transition. We observe numerically that structural relaxation occurs mostly along a very small number of nearly-unstable extended modes. This number decays for denser packing and is significantly lowered as the system undergoes the glass transition. This observation supports that structural relaxation and marginal modes share common properties. In particular theoretical results [2, 3] show that these modes extend at least on some length scale l∗∌(ϕc−ϕ)−1/2l^*\sim (\phi_c-\phi)^{-1/2} where ϕc\phi_c corresponds to the maximum packing fraction, i.e. the jamming transition. This prediction is consistent with very recent numerical observations of sheared systems near the jamming threshold [4], where a similar exponent is found, and with the commonly observed growth of the rearranging regions with compression near the glass transition.Comment: 6 pages, improved versio

    Sweet basil functional quality as shaped by genotype and macronutrient concentration reciprocal action

    Get PDF
    Basil (Ocimum basilicum L.) is among the most widespread aromatic plants due to its versatility of use and its beneficial health properties. This aromatic plant thrives in hydroponics, which is a valid tool to improve the production and functional quality of crops, but nevertheless, it offers the possibility to de-seasonalize production. A floating raft system was adopted to test the production and quality potential during autumn season of three different genotypes of Genovese basil (Aroma 2, Eleonora and Italiano Classico) grown in three nutrient solutions with crescent electrical conductivity (EC: 1, 2 and 3 dS m−1). The aromatic and phenolic profiles were determined by GC/MS and HPLC analysis, respectively. The combination Aroma 2 and the EC 2 dS m−1 resulted in the highest production, both in terms of fresh weight and dry biomass. The 2 dS m−1 treatment determined the major phenolic content, 44%, compared to the other two EC. Italiano Classico showed a higher total polyphenolic content in addition to a different aromatic profile compared to the other cultivars, characterized by a higher percentage of Eucalyptol (+37%) and Eugenol (+107%) and a lower percentage of linalool (−44%). Correct management of the nutritional solution combined with adequate genetic material managed an improvement in the production and the obtainment of the desired aromatic and phenolic profiles

    Dynamic heterogeneities in attractive colloids

    Full text link
    We study the formation of a colloidal gel by means of Molecular Dynamics simulations of a model for colloidal suspensions. A slowing down with gel-like features is observed at low temperatures and low volume fractions, due to the formation of persistent structures. We show that at low volume fraction the dynamic susceptibility, which describes dynamic heterogeneities, exhibits a large plateau, dominated by clusters of long living bonds. At higher volume fraction, where the effect of the crowding of the particles starts to be present, it crosses over towards a regime characterized by a peak. We introduce a suitable mean cluster size of clusters of monomers connected by "persistent" bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure

    Non-equilibrium dynamics of spin facilitated glass models

    Full text link
    We consider the dynamics of spin facilitated models of glasses in the non-equilibrium aging regime following a sudden quench from high to low temperatures. We briefly review known results obtained for the broad class of kinetically constrained models, and then present new results for the behaviour of the one-spin facilitated Fredrickson-Andersen and East models in various spatial dimensions. The time evolution of one-time quantities, such as the energy density, and the detailed properties of two-time correlation and response functions are studied using a combination of theoretical approaches, including exact mappings of master operators and reductions to integrable quantum spin chains, field theory and renormalization group, and independent interval and timescale separation methods. The resulting analytical predictions are confirmed by means of detailed numerical simulations. The models we consider are characterized by trivial static properties, with no finite temperature singularities, but they nevertheless display a surprising variety of dynamic behaviour during aging, which can be directly related to the existence and growth in time of dynamic lengthscales. Well-behaved fluctuation-dissipation ratios can be defined for these models, and we study their properties in detail. We confirm in particular the existence of negative fluctuation-dissipation ratios for a large number of observables. Our results suggest that well-defined violations of fluctuation-dissipation relations, of a purely dynamic origin and unrelated to the thermodynamic concept of effective temperatures, could in general be present in non-equilibrium glassy materials.Comment: 72 pages, invited contribution to special issue of JSTAT on "Principles of Dynamics of Nonequilibrium Systems" (Programme at Newton Institute Cambridge). v2: New data added to Figs. 11, 23, 24, new Fig. 26 on East model in d=3, minor improvements to tex

    Fluctuations in glassy systems

    Full text link
    We summarize a theoretical framework based on global time-reparametrization invariance that explains the origin of dynamic fluctuations in glassy systems. We introduce the main ideas without getting into much technical details. We describe a number of consequences arising from this scenario that can be tested numerically and experimentally distinguishing those that can also be explained by other mechanisms from the ones that we believe, are special to our proposal. We support our claims by presenting some numerical checks performed on the 3d Edwards-Anderson spin-glass. Finally, we discuss up to which extent these ideas apply to super-cooled liquids that have been studied in much more detail up to present.Comment: 33 pages, 7 figs, contribution to JSTAT special issue `Principles of Dynamical Systems' work-shop at Newton Institute, Univ. of Cambridge, U
    • 

    corecore