110 research outputs found
Phenotypic and Functional Properties of Helios+ Regulatory T Cells
Helios, an Ikaros family transcription factor, is preferentially expressed at the mRNA and protein level in regulatory T cells. Helios expression previously appeared to be restricted to thymic-derived Treg. Consistent with recent data, we show here that Helios expression is inducible in vitro under certain conditions. To understand phenotypic and functional differences between Helios+ and Helios− Treg, we profiled cell-surface markers of FoxP3+ Treg using unmanipulated splenocytes. We found that CD103 and GITR are expressed at high levels on a subset of Helios+ Treg and that a Helios+ Treg population could be significantly enriched by FACS sorting using these two markers. Quantitative real-time PCR (qPCR) analysis revealed increased TGF-β message in Helios+ Treg, consistent with the possibility that this population possesses enhanced regulatory potential. In tumor-bearing mice, we found that Helios+ Treg were relatively over-represented in the tumor-mass, and BrdU studies showed that, in vivo, Helios+ Treg proliferated more than Helios− Treg. We hypothesized that Helios-enriched Treg might exert increased suppressive effects. Using in vitro suppression assays, we show that Treg function correlates with the absolute number of Helios+ cells in culture. Taken together, these data show that Helios+ Treg represent a functional subset with associated CD103 and GITR expression
AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein–specific T H 1 response with a diverse TCR repertoire
AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus–vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 in clinical trials and real-world studies. We characterized CD4+ and CD8+ T cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells from 296 unique vaccine recipients aged 18 to 85 years who enrolled in the phase 2/3 COV002 trial. Total spike protein–specific CD4+ T cell helper type 1 (TH1) and CD8+ T cell responses were increased in AZD1222-vaccinated adults of all ages after two doses of AZD1222. CD4+ TH2 responses after AZD1222 vaccination were not detected. Furthermore, AZD1222-specific TH1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T cell receptor β (TCRβ) sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for both AZD1222-induced CD4+ and CD8+ T cell responses. Overall, AZD1222 vaccination induced a polyfunctional TH1-dominated T cell response, with broad CD4+ and CD8+ T cell coverage across the SARS-CoV-2 spike protein
Recombinant Newcastle disease virus immunotherapy drives oncolytic effects and durable systemic antitumor immunity
A recombinant Newcastle Disease Virus (NDV), encoding either a human (NDVhuGM-CSF, MEDI5395) or murine (NDVmuGM-CSF) GM-CSF transgene, combined broad oncolytic activity with ability to significantly modulate genes related to immune functionality in human tumor cells. Replication in murine tumor lines was significantly diminished relative to human tumor cells. Nonetheless, intratumoral injection of NDVmuGM-CSF conferred antitumor effects in three syngeneic models in vivo; with efficacy further augmented by concomitant treatment with anti-PD-1/L-1 or T cell agonists. Ex vivo immune-profiling, including TCRseq, revealed profound immune-contexture changes; consistent with priming and potentiation of adaptive immunity and tumor-microenvironment (TME) re-programming towards an immune-permissive state. CRISPR modifications rendered CT26 significantly more permissive to NDV replication, and in this setting NDVmuGM-CSF confers immune-mediated¬¬¬¬¬¬ effects in the non-injected tumor in vivo. Taken together the data supports the thesis that MEDI5395 primes and augments cell mediated antitumor immunity and has significant utility as a combination partner with other immunomodulatory cancer treatments
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Mitochondrial physiology
As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Red Sea palaeoclimate: stable isotope and element-ratio analysis of marine mollusc shells
The southern Red Sea coast is the location of more than 4,200 archaeological shell midden sites. These shell middens preserve archaeological and climatic archives of unprecedented resolution and scale. By using shells from these contexts, it is possible to link past environmental information with episodes of human occupation and resource processing. This chapter summarises current knowledge about the marine gastropod Conomurex fasciatus (Born 1778) and discusses its use in environmental and climatic reconstruction using stable isotope and elemental ratio analysis. It offers a review of the most recent studies of shell midden sites on the Farasan Islands, their regional importance during the mid-Holocene, theories about seasonal use of the coastal landscape, and preliminary results from new methods to acquire large climatic datasets from C. fasciatus shells
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant.
BACKGROUND: Assessment of the safety and efficacy of vaccines against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in different populations is essential, as is investigation of the efficacy of the vaccines against emerging SARS-CoV-2 variants of concern, including the B.1.351 (501Y.V2) variant first identified in South Africa. METHODS: We conducted a multicenter, double-blind, randomized, controlled trial to assess the safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) in people not infected with the human immunodeficiency virus (HIV) in South Africa. Participants 18 to less than 65 years of age were assigned in a 1:1 ratio to receive two doses of vaccine containing 5×1010 viral particles or placebo (0.9% sodium chloride solution) 21 to 35 days apart. Serum samples obtained from 25 participants after the second dose were tested by pseudovirus and live-virus neutralization assays against the original D614G virus and the B.1.351 variant. The primary end points were safety and efficacy of the vaccine against laboratory-confirmed symptomatic coronavirus 2019 illness (Covid-19) more than 14 days after the second dose. RESULTS: Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Among the 42 participants with Covid-19, 39 cases (95.1% of 41 with sequencing data) were caused by the B.1.351 variant; vaccine efficacy against this variant, analyzed as a secondary end point, was 10.4% (95% CI, -76.8 to 54.8). The incidence of serious adverse events was balanced between the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of the ChAdOx1 nCoV-19 vaccine did not show protection against mild-to-moderate Covid-19 due to the B.1.351 variant. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT04444674; Pan African Clinical Trials Registry number, PACTR202006922165132)
- …