66 research outputs found

    Asteroid models from the Lowell Photometric Database

    Full text link
    We use the lightcurve inversion method to derive new shape models and spin states of asteroids from the sparse-in-time photometry compiled in the Lowell Photometric Database. To speed up the time-consuming process of scanning the period parameter space through the use of convex shape models, we use the distributed computing project Asteroids@home, running on the Berkeley Open Infrastructure for Network Computing (BOINC) platform. This way, the period-search interval is divided into hundreds of smaller intervals. These intervals are scanned separately by different volunteers and then joined together. We also use an alternative, faster, approach when searching the best-fit period by using a model of triaxial ellipsoid. By this, we can independently confirm periods found with convex models and also find rotation periods for some of those asteroids for which the convex-model approach gives too many solutions. From the analysis of Lowell photometric data of the first 100,000 numbered asteroids, we derived 328 new models. This almost doubles the number of available models. We tested the reliability of our results by comparing models that were derived from purely Lowell data with those based on dense lightcurves, and we found that the rate of false-positive solutions is very low. We also present updated plots of the distribution of spin obliquities and pole ecliptic longitudes that confirm previous findings about a non-uniform distribution of spin axes. However, the models reconstructed from noisy sparse data are heavily biased towards more elongated bodies with high lightcurve amplitudes

    Asteroid Models from Multiple Data Sources

    Full text link
    In the past decade, hundreds of asteroid shape models have been derived using the lightcurve inversion method. At the same time, a new framework of 3-D shape modeling based on the combined analysis of widely different data sources such as optical lightcurves, disk-resolved images, stellar occultation timings, mid-infrared thermal radiometry, optical interferometry, and radar delay-Doppler data, has been developed. This multi-data approach allows the determination of most of the physical and surface properties of asteroids in a single, coherent inversion, with spectacular results. We review the main results of asteroid lightcurve inversion and also recent advances in multi-data modeling. We show that models based on remote sensing data were confirmed by spacecraft encounters with asteroids, and we discuss how the multiplication of highly detailed 3-D models will help to refine our general knowledge of the asteroid population. The physical and surface properties of asteroids, i.e., their spin, 3-D shape, density, thermal inertia, surface roughness, are among the least known of all asteroid properties. Apart for the albedo and diameter, we have access to the whole picture for only a few hundreds of asteroids. These quantities are nevertheless very important to understand as they affect the non-gravitational Yarkovsky effect responsible for meteorite delivery to Earth, or the bulk composition and internal structure of asteroids.Comment: chapter that will appear in a Space Science Series book Asteroids I

    The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor

    Full text link
    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.Comment: 13 pages, 3 figures, 2 table

    The Resolved Asteroid Program - Size, shape, and pole of (52) Europa

    Full text link
    With the adaptive optics (AO) system on the 10 m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa on 2005 January 20. The epochs covered its rotation period and, by following its changing shape and orientation on the plane of sky, we obtained its triaxial ellipsoid dimensions and spin pole location. An independent determination from images at three epochs obtained in 2007 is in good agreement with these results. By combining these two data sets, along with a single epoch data set obtained in 2003, we have derived a global fit for (52) Europa of diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA; Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35). Using the average of all mass determinations available forEuropa, we derive a density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with the shape model of Michalowski et al. (A&A 416, 2004), derived from optical lightcurves, illustrates excellent agreement, although several edge features visible in the images are not rendered by the model. We therefore derived a complete 3-D description of Europa's shape using the KOALA algorithm by combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We use this 3-D shape model to assess these departures from ellipsoidal shape. Flat facets (possible giant craters) appear to be less distinct on (52) Europa than on other C-types that have been imaged in detail. We show that fewer giant craters, or smaller craters, is consistent with its expected impact history. Overall, asteroid (52) Europa is still well modeled as a smooth triaxial ellipsoid with dimensions constrained by observations obtained over several apparitions.Comment: Accepted for publication in Icaru

    YORP and Yarkovsky effects in asteroids (1685) Toro, (2100) Ra-Shalom, (3103) Eger, and (161989) Cacus

    Full text link
    The rotation states of small asteroids are affected by a net torque arising from an anisotropic sunlight reflection and thermal radiation from the asteroids' surfaces. On long timescales, this so-called YORP effect can change asteroid spin directions and their rotation periods. We analyzed lightcurves of four selected near-Earth asteroids with the aim of detecting secular changes in their rotation rates that are caused by YORP. We use the lightcurve inversion method to model the observed lightcurves and include the change in the rotation rate dω/dt\mathrm{d} \omega / \mathrm{d} t as a free parameter of optimization. We collected more than 70 new lightcurves. For asteroids Toro and Cacus, we used thermal infrared data from the WISE spacecraft and estimated their size and thermal inertia. We also used the currently available optical and radar astrometry of Toro, Ra-Shalom, and Cacus to infer the Yarkovsky effect. We detected a YORP acceleration of dω/dt=(1.9±0.3)×108radd2\mathrm{d}\omega / \mathrm{d} t = (1.9 \pm 0.3) \times 10^{-8}\,\mathrm{rad}\,\mathrm{d}^{-2} for asteroid Cacus. For Toro, we have a tentative (2σ2\sigma) detection of YORP from a significant improvement of the lightcurve fit for a nonzero value of dω/dt=3.0×109radd2\mathrm{d}\omega / \mathrm{d} t = 3.0 \times 10^{-9}\,\mathrm{rad}\,\mathrm{d}^{-2}. For asteroid Eger, we confirmed the previously published YORP detection with more data and updated the YORP value to (1.1±0.5)×108radd2(1.1 \pm 0.5) \times 10^{-8}\,\mathrm{rad}\,\mathrm{d}^{-2}. We also updated the shape model of asteroid Ra-Shalom and put an upper limit for the change of the rotation rate to dω/dt1.5×108radd2|\mathrm{d}\omega / \mathrm{d} t| \lesssim 1.5 \times 10^{-8}\,\mathrm{rad}\,\mathrm{d}^{-2}. Ra-Shalom has a greater than 3σ3\sigma Yarkovsky detection with a theoretical value consistent with observations assuming its size and/or density is slightly larger than the nominally expected values

    Asteroid models reconstructed from ATLAS photometry

    Full text link
    The Asteroid Terrestrial-impact Last Alert System (ATLAS) is an all-sky survey primarily aimed at detecting potentially hazardous near-Earth asteroids. Apart from the astrometry of asteroids, it also produces their photometric measurements that contain information about asteroid rotation and their shape. To increase the current number of asteroids with a known shape and spin state, we reconstructed asteroid models from ATLAS photometry that was available for approximately 180,000 asteroids observed between 2015 and 2018. We made use of the light-curve inversion method implemented in the Asteroid@home project to process ATLAS photometry for roughly 100,000 asteroids with more than a hundred individual brightness measurements. By scanning the period and pole parameter space, we selected those best-fit models that were, according to our setup, a unique solution for the inverse problem. We derived ~2750 unique models, 950 of them were already reconstructed from other data and published. The remaining 1800 models are new. About half of them are only partial models, with an unconstrained pole ecliptic longitude. Together with the shape and spin, we also determined for each modeled asteroid its color index from the cyan and orange filter used by the ATLAS survey. We also show the correlations between the color index, albedo, and slope of the phase-angle function. The current analysis is the first inversion of ATLAS asteroid photometry, and it is the first step in exploiting the huge scientific potential that ATLAS photometry has. ATLAS continues to observe, and in the future, this data, together with other independent photometric measurements, can be inverted to produce more refined asteroid models

    Analysis of the rotation period of asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger - search for the YORP effect

    Full text link
    The spin state of small asteroids can change on a long timescale by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, the net torque that arises from anisotropically scattered sunlight and proper thermal radiation from an irregularly-shaped asteroid. The secular change in the rotation period caused by the YORP effect can be detected by analysis of asteroid photometric lightcurves. We analyzed photometric lightcurves of near-Earth asteroids (1865) Cerberus, (2100) Ra-Shalom, and (3103) Eger with the aim to detect possible deviations from the constant rotation caused by the YORP effect. We carried out new photometric observations of the three asteroids, combined the new lightcurves with archived data, and used the lightcurve inversion method to model the asteroid shape, pole direction, and rotation rate. The YORP effect was modeled as a linear change in the rotation rate in time d\omega /dt. Values of d\omega/ dt derived from observations were compared with the values predicted by theory. We derived physical models for all three asteroids. We had to model Eger as a nonconvex body because the convex model failed to fit the lightcurves observed at high phase angles. We probably detected the acceleration of the rotation rate of Eger d\omega / dt = (1.4 +/- 0.6) x 10^{-8} rad/d (3\sigma error), which corresponds to a decrease in the rotation period by 4.2 ms/yr. The photometry of Cerberus and Ra-Shalom was consistent with a constant-period model, and no secular change in the spin rate was detected. We could only constrain maximum values of |d\omega / dt| < 8 x 10^{-9} rad/d for Cerberus, and |d\omega / dt| < 3 x 10^{-8} rad/d for Ra-Shalom

    (16) Psyche: A mesosiderite-like asteroid?

    Full text link
    Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche's three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99\,±\pm\,0.26\,g\cdotcm3^{-3} for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites (\sim7.8\,g\cdotcm3^{-3}), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density \sim4.25\,\cdotcm3^{-3}). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460\,±\pm\,200}\,m at 150\,km from Psyche (0.2\%\,×\times\,RHill_{Hill}, the Hill radius) and 800\,±\pm\,200\,m at 2,000\,km (3\%\,×\times\,RHillR_{Hill}). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.Comment: 16 page

    Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry

    Full text link
    Aims. We determine the physical properties (spin state and shape) of asteroid (21) Lutetia, target of the ESA Rosetta mission, to help in preparing for observations during the flyby on 2010 July 10 by predicting the orientation of Lutetia as seen from Rosetta. Methods. We use our novel KOALA inversion algorithm to determine the physical properties of asteroids from a combination of optical lightcurves, disk-resolved images, and stellar occultations, although the latter are not available for (21) Lutetia. Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of ({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame (equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on" and more rectangular as seen "equator-on". The best-fit model suggests the presence of several concavities. The largest of these is close to the north pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and Astrophysic

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo
    corecore