3 research outputs found
Generalized Noiseless Quantum Codes utilizing Quantum Enveloping Algebras
A generalization of the results of Rasetti and Zanardi concerning avoiding
errors in quantum computers by using states preserved by evolution is
presented. The concept of dynamical symmetry is generalized from the level of
classical Lie algebras and groups to the level of dynamical symmetry based on
quantum Lie algebras and quantum groups (in the sense of Woronowicz). A natural
connection is proved between states preserved by representations of a quantum
group and states preserved by evolution with dynamical symmetry of the
appropriate universal enveloping algebra. Illustrative examples are discussed.Comment: 10 pages, LaTeX, 2 figures Postscrip
Braided Oscillators
The braided Hopf algebra structure of the generalized oscillator is
investigated. Using the solutions two types of braided Fibonacci oscillators
are introduced. This leads to two types of braided Biedenharn-Macfarlane
oscillators.Comment: 12 pages, latex, some references added, published versio