19 research outputs found

    Chronic infection of domestic cats with feline morbillivirus, United States

    Get PDF
    Letter [No abstract available

    Optimization and Dose Estimation of Aerosol Delivery to Non-Human Primates

    Get PDF
    Background: In pre-clinical animal studies, the uniformity of dosing across subjects and routes of administration is a crucial requirement. In preparation for a study in which aerosolized live-attenuated measles virus vaccine was administered to cynomolgus monkeys (Macaca fascicularis) by inhalation, we assessed the percentage of a nebulized dose inhaled under varying conditions. Methods: Drug delivery varies with breathing parameters. Therefore we determined macaque breathing patterns (tidal volume, breathing frequency, and inspiratory to expiratory (I:E) ratio) across a range of 3.3-6.5 kg body weight, using a pediatric pneumotachometer interfaced either with an endotracheal tube or a facemask. Subsequently, these breathing patterns were reproduced using a breathing simulator attached to a filter to collect the inhaled dose. Albuterol was nebulized using a vibrating mesh nebulizer and the percentage inhaled dose was determined by extraction of drug from the filter and subsequent quantification. Results: Tidal volumes ranged from 24 to 46 mL, breathing frequencies from 19 to 31 breaths per minute and I:E ratios from 0.7 to 1.6. A small pediatric resuscitation mask was identified as the best fitting interface between animal and pneumotachometer. The average efficiency of inhaled dose delivery was 32.1% (standard deviation 7.5, range 24%-48%), with variation in tidal volumes as the most important determinant. Conclusions: Studies in non-human primates aimed at comparing aerosol delivery with other routes of administration should take both the inter-subject variation and relatively low efficiency of delivery to these low body weight mammals into account

    Streptococcus pneumoniae enhances human respiratory syncytial virus infection in vitro and in vivo

    Get PDF
    Human respiratory syncytial virus (HRSV) and Streptococcus pneumoniae are important causative agents of respiratory tract infections. Both pathogens are associated with seasonal disease outbreaks in the pediatric population, and can often be detected simultaneously in infants hospitalized with bronchiolitis or pneumonia. It has been described that respiratory virus infections may predispose for bacterial superinfections, resulting in severe disease. However, studies on the influence of bacterial colonization of the upper respiratory tract on the pathogenesis of subsequent respiratory virus infections are scarce. Here, we have investigated whether pneumococcal colonization enhances subsequent HRSV infection. We used a newly generated recombinant subgroup B HRSV strain that expresses enhanced green fluorescent protein and pneumococcal isolates obtained from healthy children in disease-relevant in vitro and in vivo model systems. Three pneumococcal strains specifically enhanced in vitro HRSV infection of primary well-differentiated normal human bronchial epithelial cells grown at air-liquid interface, whereas two other strains did not. Since previous studies reported that bacterial neuraminidase enhanced HRSV infection in vitro, we measured pneumococcal neuraminidase activity in these cultures but found no correlation with the observed infection enhancement in our model. Subsequently, a selection of pneumococcal strains was used to induce nasal colonization of cotton rats, the best available small animal model for HRSV. Intranasal HRSV infection three days later resulted in strain-specific enhancement of HRSV replication in vivo. One S. pneumoniae strain enhanced HRSV both in vitro and in vivo, and was also associated with enhanced syncytium formation in vivo. However, neither pneumococci nor HRSV were found to spread from the upper to the lower respiratory tract, and neither pathogen was transmitted to naive cage mates by direct contact. These results demonstrate that pneumococcal colonization can enhance subsequent HRSV infection, and provide tools for additional mechanistic and intervention studies

    Measles skin rash: infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis

    Get PDF
    Measles is characterized by fever and a maculopapular skin rash, which is accompanied by immune clearance of measles virus (MV)-infected cells. Histopathological analyses of skin biopsies from humans and non-human primates (NHPs) with measles rash have identified MV-infected keratinocytes and mononuclear cells in the epidermis, around hair follicles and near sebaceous glands. Here, we address the pathogenesis of measles skin rash by combining data from experimentally infected NHPs, ex vivo infection of human skin sheets and in vitro infection of primary human keratinocytes. Analysis of NHP skin samples collected at different time points following MV inoculation demonstrated that infection in the skin precedes onset of rash by several days. MV infection was detected in lymphoid and myeloid cells in the dermis before dissemination to the epidermal leukocytes and keratinocytes. These data were in good concordance with ex vivo MV infections of human skin sheets, in which dermal cells were more targeted than the epidermal cells. To address viral dissemination to the epidermis and to determine whether the dissemination is receptor-dependent, we performed experimental infections of primary keratinocytes collected from healthy donors. These experiments demonstrated that MV infection of keratinocytes is mainly nectin-4- dependent, and differentiated keratinocytes, which express higher levels of nectin-4, are more susceptible to MV infection than proliferating keratinocytes. Based on these data, we propose a model to explain measles skin rash: migrating MV-infected lymphocytes initiate the infection of dermal skin-resident CD150+ immune cells. The infection is subsequently disseminated from the dermal papillae to nectin-4+ keratinocytes in the basal epidermis. Lateral spread of MV infection is observed in the superficial epidermis, most likely due to the higher level of nectin-4 expression on differentiated keratinocytes. Finally, MV-infected cells are cleared by infiltrating immune cells, causing hyperemia and edema, which give the appearance of morbilliform skin rash

    Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets

    Get PDF
    Identification of cellular receptors and characterization of viral tropism in animal models have vastly improved our understanding of morbillivirus pathogenesis. However, specific aspects of viral entry, dissemination and transmission remain difficult to recapitulate in animal models. Here, we used three virologically identical but phenotypically

    Phocine distemper Virus: Current knowledge and future directions

    Get PDF
    Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years

    Studies on the antigenic structure of a bovine enterovirus

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN004091 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore