46 research outputs found

    Functional Expansions

    Full text link
    Path dependence is omnipresent in social science, engineering, and finance. It reflects the influence of the past on the future, often expressed through functionals. However, non-Markovian problems are often infinite-dimensional, thus challenging from a conceptual and computational perspective. In this work, we shed light on expansions of functionals. First, we treat static expansions made around paths of fixed length and propose a generalization of the Wiener series-the intrinsic value expansion (IVE). In the dynamic case, we revisit the functional Taylor expansion (FTE). The latter connects the functional It\^o calculus with the signature to quantify the effect in a functional when a "perturbation" path is concatenated with the source path. In particular, the FTE elegantly separates the functional from future trajectories. The notions of real analyticity and radius of convergence are also extended to the path space. We discuss other dynamic expansions arising from Hilbert projections and the Wiener chaos, and finally show financial applications of the FTE to the pricing and hedging of exotic contingent claims.Comment: 39 pages, 7 figure

    Preference-Free Option Pricing with Path-Dependent Volatility: A Closed-Form Approach

    Full text link
    This paper shows how one can obtain a continuous-time preference-free option pricing model with a path-dependent volatility as the limit of a discrete-time GARCH model. In particular, the continuous-time model is the limit of a discrete-time GARCH model of Heston and Nandi (1997) that allows asymmetry between returns and volatility. For the continuous-time model, one can directly compute closed-form solutions for option prices using the formula of Heston (1993). Toward that purpose, we present the necessary mappings, based on Foster and Nelson (1994), such that one can approximate (arbitrarily closely) the parameters of the continuous-time model on the basis of the parameters of the discrete-time GARCH model. The discrete-time GARCH parameters can be estimated easily just by observing the history of asset prices. ; Unlike most option pricing models that are based on the absence of arbitrage alone, a parameter related to the expected return/risk premium of the asset does appear in the continuous-time option formula. However, given other parameters, option prices are not at all sensitive to the risk premium parameter, which is often imprecisely estimated

    Option Pricing under the Variance Gamma Process

    Full text link

    Functional Itô Calculus

    No full text
    corecore