4,300 research outputs found

    A secure cooperative image super-resolution transmission with decode-and-forward relaying over Rayleigh fading channels

    Get PDF
    In addition to susceptibility to performance degradation due to hardware malfunctions and environmental influences, wireless image transmission poses risks of information exposure to eavesdroppers. This paper delves into the image communications within wireless relay networks (WRNs) and proposes a secure cooperative relaying (SCR) protocol over Rayleigh fading channels. In this protocol, a source node (referred to as Alice) transmits superior-resolution (SR) images to a destination node (referred to as Bob) with the assistance of a mediating node (referred to as Relay) operating in decode-and-forward mode, all while contending with the presence of an eavesdropper (referred to as Eve). In order to conserve transmission bandwidth, Alice firstly reduces the size of the original SR images before transmitting them to Relay and Bob. Subsequently, random linear network coding (RLNC) is employed by both Alice and Relay on the down- scaled poor-resolution (PR) images to obscure the original images from Eve, thereby bolstering the security of the image communications. Simulation results demonstrate that the proposed SCR protocol surpasses both secure relaying transmission without a direct link and secure direct transmission without relaying links. Additionally, a slight reduction in image quality can be achieved by increasing the scaling factor for saving transmission bandwidth. Furthermore, the results highlight the SCR protocol’s superior effectiveness at Bob’s end when compared to Eve’s, which is due to Eve’s lack of access to the RLNC coefficient matrices and reference images utilised by Alice and Relay in the RLNC process. Finally, the evaluation of reference images, relay allocations and diversity reception over Rayleigh fading channels confirms the effectiveness of the SCR protocol for secure image communications in the WRNs

    Model Predictive Control for Smart Grids with Multiple Electric-Vehicle Charging Stations

    Get PDF
    Next-generation power grids will likely enable concurrent service for residences and plug-in electric vehicles (PEVs). While the residence power demand profile is known and thus can be considered inelastic, the PEVs' power demand is only known after random PEVs' arrivals. PEV charging scheduling aims at minimizing the potential impact of the massive integration of PEVs into power grids to save service costs to customers while power control aims at minimizing the cost of power generation subject to operating constraints and meeting demand. The present paper develops a model predictive control (MPC)- based approach to address the joint PEV charging scheduling and power control to minimize both PEV charging cost and energy generation cost in meeting both residence and PEV power demands. Unlike in related works, no assumptions are made about the probability distribution of PEVs' arrivals, the known PEVs' future demand, or the unlimited charging capacity of PEVs. The proposed approach is shown to achieve a globally optimal solution. Numerical results for IEEE benchmark power grids serving Tesla Model S PEVs show the merit of this approach

    Investigating potential biases in observed and modeled metrics of aerosol-cloud-precipitation interactions

    Get PDF
    This study utilizes large eddy simulation, aircraft measurements, and satellite observations to identify factors that bias the absolute magnitude of metrics of aerosol-cloud-precipitation interactions for warm clouds. The metrics considered are precipitation susceptibility <i>S</i><sub>o</sub>, which examines rain rate sensitivity to changes in drop number, and a cloud-precipitation metric, χ, which relates changes in rain rate to those in drop size. While wide ranges in rain rate exist at fixed cloud drop concentration for different cloud liquid water amounts, χ and <i>S</i><sub>o</sub> are shown to be relatively insensitive to the growth phase of the cloud for large datasets that include data representing the full spectrum of cloud lifetime. Spatial resolution of measurements is shown to influence the liquid water path-dependent behavior of <i>S</i><sub>o</sub> and χ. Other factors of importance are the choice of the minimum rain rate threshold, and how to quantify rain rate, drop size, and the cloud condensation nucleus proxy. Finally, low biases in retrieved aerosol amounts owing to wet scavenging and high biases associated with above-cloud aerosol layers should be accounted for. The paper explores the impact of these effects for model, satellite, and aircraft data
    • …
    corecore