19 research outputs found

    Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation

    Get PDF
    During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results

    Resolution and Contrast Enhancement for Lensless Digital Holographic Microscopy and Its Application in Biomedicine

    No full text
    An important imaging technique in biomedicine, the conventional optical microscopy relies on relatively complicated and bulky lens and alignment mechanics. Based on the Gabor holography, the lensless digital holographic microscopy has the advantages of light weight and low cost. It has developed rapidly and received attention in many fields. However, the finite pixel size at the sensor plane limits the spatial resolution. In this study, we first review the principle of lensless digital holography, then go over some methods to improve image contrast and discuss the methods to enhance the image resolution of the lensless holographic image. Moreover, the applications of lensless digital holographic microscopy in biomedicine are reviewed. Finally, we look forward to the future development and prospect of lensless digital holographic technology

    Temporal Unmixing of Dynamic Fluorescent Images by Blind Source Separation Method with a Convex Framework

    Get PDF
    By recording a time series of tomographic images, dynamic fluorescence molecular tomography (FMT) allows exploring perfusion, biodistribution, and pharmacokinetics of labeled substances in vivo. Usually, dynamic tomographic images are first reconstructed frame by frame, and then unmixing based on principle component analysis (PCA) or independent component analysis (ICA) is performed to detect and visualize functional structures with different kinetic patterns. PCA and ICA assume sources are statistically uncorrelated or independent and don’t perform well when correlated sources are present. In this paper, we deduce the relationship between the measured imaging data and the kinetic patterns and present a temporal unmixing approach, which is based on nonnegative blind source separation (BSS) method with a convex analysis framework to separate the measured data. The presented method requires no assumption on source independence or zero correlations. Several numerical simulations and phantom experiments are conducted to investigate the performance of the proposed temporal unmixing method. The results indicate that it is feasible to unmix the measured data before the tomographic reconstruction and the BSS based method provides better unmixing quality compared with PCA and ICA

    Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    No full text
    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging

    An effective reconstruction method for magnetic particle imaging based on deep neural networks constrained by a physical model

    No full text
    Magnetic particle imaging (MPI) visualizes the spatial distribution of magnetic particles based on their nonlinear response signals. Such a process can be implemented by image reconstruction. In recent years, deep learning techniques supported by large amounts of training data have been widely used in various medical image reconstructions. However, the acquisition of MPI data requires a long time of obtaining and preprocessing. This makes it impractical to obtain a sufficient amount of data for training. In this work, we propose an MPI image reconstruction framework that incorporates physical model constraints into deep learning networks to overcome the limitation of dependence on training data. This framework optimizes the network parameters through constraints of the physical model rather than training with paired data. Simulation results show that this is an effective reconstruction strategy and has good reconstruction robustness

    Reconstruction for Limited-Projection Fluorescence Molecular Tomography Based on a Double-Mesh Strategy

    No full text
    Limited-projection fluorescence molecular tomography (FMT) has short data acquisition time that allows fast resolving of the three-dimensional visualization of fluorophore within small animal in vivo. However, limited-projection FMT reconstruction suffers from severe ill-posedness because only limited projections are used for reconstruction. To alleviate the ill-posedness, a feasible region extraction strategy based on a double mesh is presented for limited-projection FMT. First, an initial result is rapidly recovered using a coarse discretization mesh. Then, the reconstructed fluorophore area in the initial result is selected as a feasible region to guide the reconstruction using a fine discretization mesh. Simulation experiments on a digital mouse and small animal experiment in vivo are performed to validate the proposed strategy. It demonstrates that the presented strategy provides a good distribution of fluorophore with limited projections of fluorescence measurements. Hence, it is suitable for reconstruction of limited-projection FMT

    Normalized Born Approximation-Based Two-Stage Reconstruction Algorithm for Quantitative Fluorescence Molecular Tomography

    No full text
    Fluorescence molecular tomography (FMT) is a promising technique for in vivo small animal imaging. In this paper, a two-stage reconstruction method based on normalized Born approximation is developed for FMT, which includes two steps for quantitative reconstruction. First, the localization of fluorescent fluorophore is determined by l1-norm regularization method. Then, in the location region of fluorophore, which is provided by the first stage, algebraic reconstruction technique (ART) is utilized for the fluorophore concentration reconstruction. The validity of the two-stage quantitative reconstruction algorithm is testified by simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom. The results suggest that we are able to recover the fluorophore location and concentration

    doi:10.1155/2011/203537 Research Article Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l1 regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT. 1
    corecore