20 research outputs found
Unconventional inorganic characteristics of 4 types of Xinjiang coals and their influence on the generation of ultrafine particles
A deep understanding of the effects of the inorganic characteristics of Xinjiang coals on combustion particulate generation is of great significance for their clean and efficient utilization. This work investigated the inorganic characteristics of Wucaiwan coal (WCW), Wanxiang coal (WX), Tianchi coal (TC), and Xiheishan coal (XHS) and the their relationship with the production of ultrafine particulates during combustion. The results show that the four Xinjiang coals are mainly lignites with low ash and sulfur contents. Coal ashes are enriched in basic elements. Among them, the content of Na2O (3.58%−7.13%) is commonly higher than that of conventional utility coals. The ashes of WCW and WX coals have higher contents of CaO (> 33%), but low contents of SiO2 and Al2O3. WX coal is particularly characterized by high Na and Cl. The Na in coal is primarily water soluble(62.3%−90.6%). The K is mainly HCl insoluble. The Fe occurs primarily as HCl soluble and insoluble forms. And the distribution of Ca and Mg in different forms varies according to coal types. The composition of ultrafine particulate matter from Xinjiang coal combustion is dominated by Na, K, Cl, and S. The particle size range of the ultrafine particulate matter is accurately defined by using the condition that the mass fraction of Na2O+K2O+Cl+SO3 is higher than 50%. The ultrafine particulate matter of WCW, TC and XHS coals has similar particle size ranges (≤0.07 μm); while the ultrafine particulate matter of WX coal, which has the highest content of Na in the water-soluble form, has a wider particle size range (≤0.76 μm). The generation of ultrafine particulate matter (y) is found to be highly linearly and positively correlated with the total amount of water-soluble (Na+K) (x) in the coal, with the relationship equation y = 0.528x−0.239 and the correlation coefficient of 0.948
Genome-wide characterization of post-transcriptional processes related to wood formation in Dalbergia odorifera
Abstract Background Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio’s SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. Results We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA’s role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. Conclusions This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding
PM10 formation during the combustion of N2-char and CO2-char of Chinese coals
The formation of PM10 (particles less than or equal to 10 µm in aerodynamic diameter) during char combustion in both air-firing and oxy-firing was investigated. Three Chinese coals of different ranks (i.e., DT bituminous coal, CF lignite, and YQ anthracite) were devolatilized at 1300 °C in N2 and CO2 atmosphere, respectively, in a drop tube furnace (DTF). The resulting N2-chars and CO2-chars were burned at 1300 °C in both air-firing (O2/N2 = 21/79) and oxy-firing (O2/CO2 = 21/79). The effects of char properties and combustion conditions on PM10 formation during char combustion were studied. It was found that the formation modes and particle size distribution of PM10 from char combustion whether in air-firing or in oxy-firing were similar to those from pulverized coal combustion. The significant amounts of PM0.5 (particles less than or equal to 0.5 µm in aerodynamic diameter) generated from combustion of various chars suggested that the mineral matter left in the chars after coal devolatilization still had great contributions to the formation of ultrafine particles even during the char combustion stage. The concentration of PM10 from char combustion in oxy-firing was generally less than that in air-firing. The properties of the CO2-chars were different from those of the N2-chars, which was likely due to gasification reactions coal particles experienced during devolatilization in CO2 atmosphere. Regardless of the combustion modes, PM10 formation in combustion of N2-char and CO2-char from the same coal was found to be significantly dependent on char properties. The difference in the PM10 formation behavior between the N2-char and CO2-char was coal-type dependent