49 research outputs found

    Lingual Salt Glands in Crocodylus acutus and C. johnstoni and Their Absence from Alligator mississipiensis and Caiman crocodilus

    Get PDF
    1. Lingual salt glands, secreting hyperosmotic Na/K solutions in response to methacholine, are present in Crocodylus acutus and C. johnstoni but apparently absent from the alligatorids, Alligator mississipiensis and Caiman crocodilus. 2. Both secretory rates (6-20 [micro-mol/100 g-h) and concentrations (450-600 mM Na) of glandular secretions are essentially identical in the marine/estuarine C. acutus and C. porosus and significantly higher than in the freshwater C. johnstoni (1-2 micro-mol/100 g-h; 320-420 mM Na). 3. Lingual glands in Alligator secrete isosmotic Na/K at low rates (1-2 micro-mol/100 g-h) while those of Caiman show no response to methacholine. 4. The physiological contrast between alligatorids and crocodylids is reflected in distinct differences in the superficial appearance of the tongue and lingual pores. 5. It is postulated that the alligatorid condition of low secretory capacity and isosmotic secretion reflects the primitive salivary function of lingual glands from which the salt-secreting capability in crocodylids was derived

    Plasma Homeostasis and Cloacal Urine Composition in Crocodylus porosus Caught Along a Salinity Gradient

    Get PDF
    Juveniles of the Estuarine or Saltwater Crocodile, Crocodylus porosus, maintain both osmotic pressure and plasma electrolyte homeostasis along a salinity gradient from fresh water to the sea. In fresh water (FW) the cloacal urine is a clear solution rich in ammonium and bicarbonate and containing small amounts of white precipitated solids with high concentrations of calcium and magnesium. In salt water (SW) the cloacal urine has a much higher proportion of solids, cream rather than white in colour, which are the major route for excretion of potassium in addition to calcium and magnesium. Neither liquid nor solid fractions of the cloacal urine represent a major route for excretion of sodium chloride. The solids are urates and uric acid, and their production probably constitutes an important strategy for water conservation by C. porosus in SW. These data, coupled with natural history observations and the recent identification of lingual salt glands, contribute to the conclusion that C. porosus is able to live and breed in either fresh or salt water and may be as euryhaline as any reptile

    Survival and Growth of Hatchling Crocodylus porosus in Saltwater Without Access to Fresh Drinking Water

    Get PDF
    It has been suggested that C. porosus select nest sites which provide a source of freshwater for hatchlings during the dry season. From a mark-recapture study, we conclude that hatchling C. porosus can survive and grow in hyperosmotic saltwater without drinking fresh water. Hence, the siting of nests is unlikely to be the consequence of a requirement by hatchlings for fresh water. Considered along with other information, our observations imply that hatchling C. porosus have functional salt glands

    Is Aquatic Life Correlated with an Increased Hematocrit in Snakes?

    Get PDF
    Background: Physiological adaptations that allow air-breathing vertebrates to remain underwater for long periods mainly involve modifications of the respiratory system, essentially through increased oxygen reserves. Physiological constraints on dive duration tend to be less critical for ectotherms than for endotherms because the former have lower mass-specific metabolic rates. Moreover, comparative studies between marine and terrestrial ectotherms have yet to show overall distinct physiological differences specifically associated with oxygen reserves. Methodology/Principal Findings: We used phylogenetically informed statistical models to test if habitat affects hematocrit (an indicator of blood oxygen stores) in snakes, a lineage that varies widely in habitat use. Our results indicate that both phylogenetic position (clade) and especially habitat are significant predictors of hematocrit. Our analysis also confirms the peculiar respiratory physiology of the marine Acrochordus granulatus. Conclusion/Significance: Contrary to previous findings, marine snakes have significantly–albeit slightly–elevated hematocrit, which should facilitate increased aerobic dive times. Longer dives could have consequences for foraging, mate searching, and predation risks. Alternatively, but not exclusively, increased Hct in marine species might also help t

    Osmoregulation of the Australian freshwater crocodile, Crocodylus johnstoni, in fresh and saline waters

    Get PDF
    An unusual saltwater population of the "freshwater" crocodilian, Crocodylus johnstoni, was studied in the estuary of the Limmen Bight River in Australia's Northern Territory and compared with populations in permanently freshwater habitats. Crocodiles in the river were found across a large salinity gradient, from fresh water to a salinity of 24 mg.ml-1, more than twice the body fluid concentration. Plasma osmolarity, concentrations of plasma Na+, Cl-, and K+, and exchangeable Na+ pools were all remarkably constant across the salinity spectrum and were not substantially higher or more variable than those in crocodiles from permanently freshwater habitats. Body fluid volumes did not vary; condition factor and hydration status of crocodiles were not correlated with salinity and were not different from those of crocodiles from permanently fresh water. C. johnstoni clearly has considerable powers of osmoregulation in waters of low to medium salinity. Whether this osmoregulatory competence, extends to continuously hyperosmotic environments is not known, but distributional data suggest that C. johnstoni in hyperosmotic conditions may require periodic access to hypoosmotic water. The study demonstrates a physiological capacity for colonisation of at least some estuarine waters by this normally stenohaline freshwater crocodilian
    corecore