72 research outputs found
Excitations of Bose-Einstein condensates in optical lattices
In this paper we examine the excitations observable in atoms confined in an
optical lattice around the superfluid-insulator transition. We use increases in
the number variance of atoms, subsequent to tilting the lattice as the primary
diagnostic of excitations in the lattice. We show that this locally determined
quantity should be a robust indicator of coherence changes in the atoms
observed in recent experiments. This was found to hold for commensurate or
non-commensurate fillings of the lattice, implying our results will hold for a
wide range of physical cases. Our results are in good agreement with the
quantitative factors of recent experiments. We do, howevers, find extra
features in the excitation spectra. The variation of the spectra with the
duration of the perturbation also turns out to be an interesting diagnostic of
atom dynamics.Comment: 6 pages, 7 figures, using Revtex4; changes to version 2: new data and
substantial revision of tex
Attaining subclassical metrology in lossy systems with entangled coherent states
Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled coherent states (ECSs) have the potential to perform robust subclassical measurements [J. Joo et al., Phys. Rev. Lett. 107, 083601 (2011)]. Up to now no read-out scheme has been devised that exploits this robust nature of ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical bound, even with loss.We show substantial improvements over unentangled classical states and highly entangled NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near future
Entanglement enhanced atomic gyroscope
The advent of increasingly precise gyroscopes has played a key role in the
technological development of navigation systems. Ring-laser and fibre-optic
gyroscopes, for example, are widely used in modern inertial guidance systems
and rely on the interference of unentangled photons to measure mechanical
rotation. The sensitivity of these devices scales with the number of particles
used as . Here we demonstrate how, by using sources of entangled
particles, it is possible to do better and even achieve the ultimate limit
allowed by quantum mechanics where the precision scales as 1/N. We propose a
gyroscope scheme that uses ultra-cold atoms trapped in an optical ring
potential.Comment: 19 pages, 2 figure
Creation of macroscopic superposition states from arrays of Bose-Einstein condensates
We consider how macroscopic quantum superpositions may be created from arrays
of Bose-Einstein condensates. We study a system of three condensates in Fock
states, all with the same number of atoms and show that this has the form of a
highly entangled superposition of different quasi-momenta. We then show how, by
partially releasing these condensates and detecting an interference pattern
where they overlap, it is possible to create a macroscopic superposition of
different relative phases for the remaining portions of the condensates. We
discuss methods for confirming these superpositions.Comment: 7 pages, 5 figure
Measuring atomic NOON-states and using them to make precision measurements
A scheme for creating NOON-states of the quasi-momentum of ultra-cold atoms
has recently been proposed [New J. Phys. 8, 180 (2006)]. This was achieved by
trapping the atoms in an optical lattice in a ring configuration and rotating
the potential at a rate equal to half a quantum of angular momentum . In this
paper we present a scheme for confirming that a NOON-state has indeed been
created. This is achieved by spectroscopically mapping out the anti-crossing
between the ground and first excited levels by modulating the rate at which the
potential is rotated. Finally we show how the NOON-state can be used to make
precision measurements of rotation.Comment: 14 preprint pages, 7 figure
Effect of multimode entanglement on lossy optical quantum metrology
In optical interferometry multimode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single-mode quantum states perform just as well as their multimode entangled counterparts. We go beyond this to show that when photon losses occur, an inevitability in any realistic system, multimode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote an alternate way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future
Recommended from our members
Secure quantum remote sensing without entanglement
Quantum metrology and quantum communications are typically considered as distinct applications in the broader portfolio of quantum technologies. However, there are cases where we might want to combine the two and recent proposals have shown how this might be achieved in entanglement-based systems1â5. Here we present an entanglement-free alternative that has advantages in terms of simplicity and practicality, requiring only individual qubits to be transmitted. We demonstrate the performance of the scheme in both the low and high data limits, showing quantum advantages both in terms of measurement precision and security against a range of possible attacks
- âŠ