5,692 research outputs found

    MAESTROS: A multi-wavelength time domain NIRS system to monitor changes in oxygenation and oxidation state of cytochrome-c-oxidase

    Get PDF
    CCBY We present a multi-wavelength, multi-channel, time domain near-infrared spectroscopy (NIRS) system named MAESTROS. This instrument can measure absorption and scattering coefficients and can quantify the concentrations of oxy- and deoxy-haemoglobin ([HbO2] , [HHb]), and oxidation state of cytochrome-c-oxidase ([oxCCO] ). This system is composed of a supercontinuum laser source coupled with two acousto-optic tuneable filters (AOTF). The light is collected by four photomultipliers tubes (PMT), connected to a router to redirect the signal to a single TCSPC card. The interface between the system and the tissue is based on optical fibres. This arrangement allows us to resolve up to sixteen wavelengths, within the range of 650 to 900 nm, at a sampling rate compatible with the physiology (from 0.5 to 2 Hz). In this paper, we describe the system and assess its performance based on two specifically designed protocols for photon migration instruments, the BIP and nEUROPt protocols, and on a well characterized liquid phantom based on Intralipid and water. Then, the ability to resolve [HbO2], [HHb] and [oxCCO] is demonstrated on a homogeneous liquid phantom, based on blood for [HbO2] , [HHb] and yeast for [oxCCO] . In the future, the system could be used to monitor brain tissue physiology

    A Gauge-Gravity Relation in the One-loop Effective Action

    Full text link
    We identify an unusual new gauge-gravity relation: the one-loop effective action for a massive spinor in 2n dimensional AdS space is expressed in terms of precisely the same function [a certain multiple gamma function] as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field [one for which the eigenvalues of F_{\mu\nu} are maximally degenerate, corresponding in 4 dimensions to a self-dual field, equivalently to a field of definite helicity], subject to the identification F^2 \Lambda, where \Lambda is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge-gravity relation at the non-perturbative level and at the amplitude level.Comment: 6 page

    The Landau problem and noncommutative quantum mechanics

    Full text link
    The conditions under which noncommutative quantum mechanics and the Landau problem are equivalent theories is explored. If the potential in noncommutative quantum mechanics is chosen as V=ΩV= \Omega \aleph with \aleph defined in the text, then for the value θ~=0.22×1011cm2{\tilde \theta} = 0.22 \times 10^{-11} cm^2 (that measures the noncommutative effects of the space), the Landau problem and noncommutative quantum mechanics are equivalent theories in the lowest Landau level. For other systems one can find differents values for θ~{\tilde \theta} and, therefore, the possible bounds for θ~{\tilde \theta} should be searched in a physical independent scenario. This last fact could explain the differents bounds for θ~\tilde \theta found in the literature.Comment: This a rewritten and corrected version of our previous preprint hep-th/010517

    The Galactic dust as a foreground to Cosmic Microwave Background maps

    Full text link
    We present results obtained with the PRONAOS balloon-borne experiment on interstellar dust. In particular, the submillimeter / millimeter spectral index is found to vary between roughly 1 and 2.5 on small scales (3.5' resolution). This could have implications for component separation in Cosmic Microwave Background maps.Comment: 4 pages, 1 figure, proceeding of the Multi-Wavelength Cosmology conference held in Mykonos, Greece, June 2003, ed. Kluwe

    Supersymmetric quantum mechanics with nonlocal potentials

    Get PDF
    We consider supersymmetric quantum mechanical models with both local and nonlocal potentials. We present a nonlocal deformation of exactly solvable local models. Its energy eigenfunctions and eigenvalues are determined exactly. We observe that both our model Hamiltonian and its supersymmetric partner may have normalizable zero-energy ground states, in contrast to local models with nonperiodic or periodic potentials.Comment: 4 pages, REVTeX, Minor revisions for clarificatio

    Characterization of best linear unbiased estimates generated from national genetic evaluations of reproductive performance, survival, and milk yield in dairy cows

    Get PDF
    peer-reviewedGenetic evaluations decompose an observed phenotype into its genetic and nongenetic components; the former are termed BLUP with the solutions for the systematic environmental effects in the statistical model termed best linear unbiased estimates (BLUE). Geneticists predominantly focus on the BLUP and rarely consider the BLUE. The objective of this study, however, was to define and quantify the association between 8 herd-level characteristics and BLUE for 6 traits in dairy herds, namely (1) age at first calving, (2) calving to first service interval (CFS), (3) number of services, (4) calving interval (CIV), (5) survival, and (6) milk yield. Phenotypic data along with the fixed and random effects solutions were generated from the Irish national multi-breed dairy cow fertility genetic evaluations on 3,445,557 cows; BLUE for individual contemporary groups were collapsed into mean herd-year estimates. Data from 5,707 spring-calving herds between the years 2007 and 2016 inclusive were retained; association analyses were undertaken using linear mixed multiple regression models. Pearson coefficient correlations were used to quantify the relationships among individual trait herd-year BLUE, and transition matrices were used to understand the dynamics of mean herd BLUE estimates over years. Based on the mean annual trends in raw, BLUP, and BLUE, it was estimated that BLUE were associated with at least two-thirds of the improvement in CIV and milk production over the past 10 yr. Milk recording herds calved heifers for the first time on average 15 d younger, had an almost 2 d longer CFS but 2.3 d shorter CIV than non-milk-recording herds. Larger herd sizes were associated with worse BLUE for both CFS and CIV. Expanding herds and herds that had the highest proportion of cows born on the farm itself, on average, calved heifers younger and had shorter CIV. By separating the raw performance of a selection of herds into their respective BLUE and BLUP, it was possible to identify herds with inferior management practices that were being compensated by superior genetics; similarly, herds were identified with superior BLUE, but because of their inferior genetic merit, were not reaching their full potential. This suggests that BLUE could have a pivotal role in a tailored decision support tool that would enable producers to focus on the most limiting factor hindering them from achieving their maximum performance

    An Investigation of the KFK_{F}-type Lorentz-Symmetry Breaking Gauge Models in N=1N=1-Supersymmetric Scenario

    Full text link
    In this work, we present two possible venues to accomodate the KFK_{F}-type Lorentz-symmetry violating Electrodynamics in an N=1N=1-supersymmetric framework. A chiral and a vector superfield are chosen to describe the background that signals Lorentz-symmetry breaking. In each case, the  Kμνκλ\ K_{\mu \nu \kappa \lambda }-tensor is expressed in terms of the components of the background superfield that we choose to describe the breaking. We also present in detail the actions with all fermionic partners of the background that determine  Kμνκλ\ K_{\mu \nu \kappa \lambda }.Comment: 10 page

    2+1 Dimensional Georgi-Glashow Instantons in Weyl Gauge

    Full text link
    Semiclassical instanton solutions in the 3D SU(2) Georgi-Glashow model are transformed into the Weyl gauge. This illustrates the tunneling interpretation of these instantons and provides a smooth regularization of the singular unitary gauge. The 3D Georgi-Glashow model has both instanton and sphaleron solutions, in contrast to 3D Yang-Mills theory which has neither, and 4D Yang-Mills theory which has instantons but no sphaleron, and 4D electroweak theory which has a sphaleron but no instantons. We also discuss the spectral flow picture of fundamental fermions in a Georgi-Glashow instanton background.Comment: 22 pages, 8 figures, revtex4; v2 - references and comments adde

    Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and O2 / Ar observations

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 681-695, doi:10.5194/bg-12-681-2015.We assess the ability of ocean biogeochemical models to represent seasonal structures in biomass and net community production (NCP) in the Southern Ocean. Two models are compared to observations on daily to seasonal timescales in four different sections of the region. We use daily satellite fields of chlorophyll (Chl) as a proxy for biomass and in situ observations of O2 and Ar supersaturation (ΔO2 / Ar) to estimate NCP. ΔO2 / Ar is converted to the flux of biologically generated O2 from sea to air (O2 bioflux). All data are aggregated to a climatological year with a daily resolution. To account for potential regional differences within the Southern Ocean, we conduct separate analyses of sections south of South Africa, around the Drake Passage, south of Australia, and south of New Zealand. We find that the models simulate the upper range of Chl concentrations well, underestimate spring levels significantly, and show differences in skill between early and late parts of the growing season. While there is a great deal of scatter in the bioflux observations in general, the four sectors each have distinct patterns that the models pick up. Neither model exhibits a significant distinction between the Australian and New Zealand sectors and between the Drake Passage and African sectors. South of 60° S, the models fail to predict the observed extent of biological O2 undersaturation. We suggest that this shortcoming may be due either to problems with the ecosystem dynamics or problems with the vertical transport of oxygen.This work was supported in part by funding from the National Aeronautic and Space Administration (NASA NNX08AF12G) and the National Science Foundation (NSF OPP-0823101)

    Evaluation of the Southern Ocean O2/Ar-based NCP estimates in a model framework

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 118 (2013): 385–399, doi:10.1002/jgrg.20032.The sea-air biological O2 flux assessed from measurements of surface O2 supersaturation in excess of Ar supersaturation (“O2 bioflux”) is increasingly being used to constrain net community production (NCP) in the upper ocean mixed layer. In making these calculations, one generally assumes that NCP is at steady state, mixed layer depth is constant, and there is no O2 exchange across the base of the mixed layer. The object of this paper is to evaluate the magnitude of errors introduced by violations of these assumptions. Therefore, we examine the differences between the sea-air biological O2 flux and NCP in the Southern Ocean mixed layer as calculated using two ocean biogeochemistry general circulation models. In this approach, NCP is considered a known entity in the prognostic model, whereas O2 bioflux is estimated using the model-predicted O2/Ar ratio to compute the mixed layer biological O2 saturation and the gas transfer velocity to calculate flux. We find that the simulated biological O2 flux gives an accurate picture of the regional-scale patterns and trends in model NCP. However, on local scales, violations of the assumptions behind the O2/Ar method lead to significant, non-uniform differences between model NCP and biological O2 flux. These errors arise from two main sources. First, venting of biological O2 to the atmosphere can be misaligned from NCP in both time and space. Second, vertical fluxes of oxygen across the base of the mixed layer complicate the relationship between NCP and the biological O2 flux. Our calculations show that low values of O2 bioflux correctly register that NCP is also low (<10 mmol m−2 day−1), but fractional errors are large when rates are this low. Values between 10 and 40 mmol m−2 day−1 in areas with intermediate mixed layer depths of 30 to 50 m have the smallest absolute and relative errors. Areas with O2 bioflux higher than 30 mmol m−2 day−1 and mixed layers deeper than 40 m tend to underestimate NCP by up to 20 mmol m−2 day−1. Excluding time periods when mixed layer biological O2 is undersaturated, O2 bioflux underestimates time-averaged NCP by 5%–15%. If these time periods are included, O2 bioflux underestimates mixed layer NCP by 20%–35% in the Southern Ocean. The higher error estimate is relevant if one wants to estimate seasonal NCP since a significant amount of biological production takes place when mixed layer biological O2 is undersaturated.This work was supported in part by funding from the National Aeronautic and Space Administration (NASA NNX08AF12G) and National Science Foundation (NSF OPP-0823101)
    corecore