25,059 research outputs found
The upgrading of glass microballoons
The processes and mechanisms involved in producing glass microballoons of acceptable quality for laser fusion by gas jet levitation and manipulation were studied. Glass microballoons (GMBs) levitated at temperatures below, as well as above the liquidus, appear to diffuse sulfur dioxide, a polar molecule with a moderately large diameter, and hydrogen, a much smaller molecule at comparable rates. Rates on the order of tens of atmospheres per hour (constant volume) per atmosphere of partial pressure differential have been observed at temperatures around the liquidus. Relatively rapid and convenient filling of molten GMBs by levitation in deuterium and tritium appears to be a possibility
Influence of anneal atmosphere on ZnO-nanorod photoluminescent and morphological properties with self-powered photodetector performance
OA Monitor ExerciseEPSR
Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion
Designing a scalable system to capture CO₂ from the air and convert it into valuable chemicals, fuels, and materials could be transformational for mitigating climate change. Climate models predict that negative greenhouse gas emissions will be required by the year 2050 in order to stay below a 2 °C change in global temperature. The processes of CO₂ capture, CO₂ conversion, and finally product separation all require significant energy inputs; devising a system that simultaneously minimizes the energy required for all steps is an important challenge. To date, a variety of prototype or pilot-level CO₂ capture and/or conversion systems have been designed and built targeting the individual objectives of either capture or conversion. One approach has focused on CO₂ removal from the atmosphere and storage of pure pressurized CO₂. Other efforts have concentrated on CO₂ conversion processes, such as electrochemical reduction or fermentation. Only a few concepts or analyses have been developed for complete end-to-end processes that perform both CO₂ capture and transformation
Studies of atmospheric refraction effects on laser data
The refraction effect from three perspectives was considered. An analysis of the axioms on which the accepted correction algorithms were based was the first priority. The integrity of the meteorological measurements on which the correction model is based was also considered and a large quantity of laser observations was processed in an effort to detect any serious anomalies in them. The effect of refraction errors on geodetic parameters estimated from laser data using the most recent analysis procedures was the focus of the third element of study. The results concentrate on refraction errors which were found to be critical in the eventual use of the data for measurements of crustal dynamics
Development of the sonic pump levitator
The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft
Sonic levitation apparatus
A sonic levitation apparatus is disclosed which includes a sonic transducer which generates acoustical energy responsive to the level of an electrical amplifier. A duct communicates with an acoustical chamber to deliver an oscillatory motion of air to a plenum section which contains a collimated hole structure having a plurality of parallel orifices. The collimated hole structure converts the motion of the air to a pulsed. Unidirectional stream providing enough force to levitate a material specimen. Particular application to the production of microballoons in low gravity environment is discussed
Development of the sonic pump levitation
A prototype levitating/positioning device termed the Sonic Pump Levitator was designed, built and successfully tested in full gravity and in the reduced gravity of the parabolic flight regime of the KC-135. Positioning is achieved by timely and appropriate application of gas momentum from one or more of six sonic pumps. The sonic pumps, which are arranged orthogonally in opposed pairs about the levitation region, are activated by an electro-optical, computer controlled, feedback system. The sonic pump is a transducer which is capable of converting sound energy into a directed flow of gas. It consists of a loudspeaker whose face is sealed by a closure perforated by one or more orifices. The diaphragm of the loudspeaker is the only moving part of the sonic pump, no valves being needed. This very low inertia electromechanical device was developed to provide the short response time necessary to keep pace with the demands of computerized position keeping
Inverse opal ceria–zirconia: architectural engineering for heterogeneous catalysis
The application of inverse opal structured materials is extended to the ceria–zirconia (Ce_(0.5)Zr_(0.5)O_2) system and the significance of material architecture on heterogeneous catalysis, specifically, chemical oxidation, is examined
Unmasking quality: exploring meanings of health by doing art
This paper arises from a presentation at the ‘Quality in Healthcare’ symposium at Cumberland Lodge, England, in 2013. MK, CR and SH conceived the paper and led the writing of the manuscript. JF, JL-D, AC, DE contributed substantially to the intellectual content of the paper through providing critical commentary and interpretation. All authors read and approved the final manuscript
- …