18 research outputs found

    Nature’s nations: the shared conservation history of Canada and the USA

    Get PDF
    Historians often study the history of conservation within the confines of national borders, concentrating on the bureaucratic and political manifestations of policy within individual governments. Even studies of the popular expression of conservationist ideas are generally limited to the national or sub-national (province, state, etc.) scale. This paper suggests that conservationist discourse, policy and practice in Canada and the USA were the products of a significant cross-border movement of ideas and initiatives derived from common European sources. In addition, the historical development of common approaches to conservation in North America suggests, contrary to common assumptions, that Canada did not always lag behind the USA in terms of policy innovation. The basic tenets of conservation (i.e. state control over resource, class-based disdain for subsistence hunters and utilitarian approaches to resource management) have instead developed at similar time periods and along parallel ideological paths in Canada and the USA

    Morphological and physiological traits influencing biomass productivity in short-rotation coppice poplar

    No full text
    Fast-growing hybrid poplar (Populus spp.) have potential as a short-rotation coppice crop grown for biomass energy. This work identifies traits for fast growth studied in an American interspecific pedigree derived from Populus trichocarpa Torr. & A. Gray × Populus deltoides Marsh. grown in the United Kingdom for the first time. The biomass yield after the first coppice rotation was estimated to range from 0.04 to 23.68 oven-dried t·ha–1·year–1. This great range suggests that genotypes from this pedigree may be used to understand the genetic basis of high yield in short-rotation coppice, which would be advantageous for informing breeding programs for biomass crops. Relationships between stem, leaf, cell traits, and biomass yield were investigated. Partial least-squares analysis was used to order the traits by importance. The traits most influential on biomass were maximum stem height throughout the growing season, basal diameter, number of stems, and number of sylleptic branches, which showed high heritability, indicating excellent potential for breeding programs. The leaf traits, leaf area, number of leaves on the leading stem, and plastochron index were also associated with an increase in biomass, leading to a better understanding of this trait
    corecore