74 research outputs found
Manual for 70 mm hand-held photography from Skylab
A manual and atlas used on the Skylab mission for hand-held photography are presented. The manual covers terrain, environmental, meteorological, and dim light photography while the atlas covers sections from the Army Map Service 1:40.000,000 world map, a glossary of geologic terms, geologic maps, and recommended exposure times
Practical Low Data-Complexity Subspace-Trail Cryptanalysis of Round-Reduced PRINCE
Subspace trail cryptanalysis is a very recent new cryptanalysis
technique, and includes differential, truncated differential,
impossible differential, and integral attacks as special cases.
In this paper, we consider PRINCE, a widely analyzed block cipher
proposed in 2012.
After the identification of a 2.5 rounds subspace trail of PRINCE, we
present several (truncated differential) attacks up to 6 rounds of PRINCE. This includes a very practical attack with the lowest data complexity of only 8 plaintexts for 4 rounds, which co-won the final round of the PRINCE challenge in the 4-round chosen-plaintext category.
The attacks have been verified using a C implementation.
Of independent interest, we consider a variant of PRINCE in which ShiftRows and MixLayer operations are exchanged in position. In particular, our result shows that the position of ShiftRows and MixLayer operations influences the security of PRINCE.
The same analysis applies to follow-up designs inspired by PRINCE
Legislative History: An Act Concerning the Operation of Emergency Medical Vehicles (SP482)(LD 1303)
https://digitalmaine.com/legishist114/2302/thumbnail.jp
CHARACTERISTICS OF THE INCREASED ADRENOCORTICAL FUNCTION OBSERVED IN MANY OBESE PATIENTS *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75360/1/j.1749-6632.1965.tb34805.x.pd
ElimLin Algorithm Revisited
ElimLin is a simple algorithm for solving polynomial systems of multivariate equations over small finite fields. It was initially proposed as a single tool by Courtois to attack DES. It can reveal some hidden linear equations existing in the ideal generated by the system. We report a number of key theorems on ElimLin. Our main result is to characterize ElimLin in terms of a sequence of intersections of vector spaces. It implies that the linear space generated by ElimLin is invariant with respect to any variable ordering during elimination and substitution. This can be seen as surprising given the fact that it eliminates variables. On the contrary, monomial ordering is a crucial factor in Gröbner basis algorithms such as F4. Moreover, we prove that the result of ElimLin is invariant with respect to any affine bijective variable change. Analyzing an overdefined dense system of equations, we argue that to obtain more linear equations in the succeeding iteration in ElimLin some restrictions should be satisfied. Finally, we compare the security of LBlock and MIBS block ciphers with respect to algebraic attacks and propose several attacks on Courtois Toy Cipher version 2 (CTC2) with distinct parameters using ElimLin
Simpira v2: A Family of Efficient Permutations Using the AES Round Function
International audienceThis paper introduces Simpira, a family of cryptographic permutations that supports inputs of 128*b bits, where b is a positive integer. Its design goal is to achieve high throughput on virtually all modern 64-bit processors, that nowadays already have native instructions for AES. To achieve this goal, Simpira uses only one building block: the AES round function. For b=1, Simpira corresponds to 12-round AES with fixed round keys, whereas for b>=2, Simpira is a Generalized Feistel Structure (GFS) with an F-function that consists of two rounds of AES. We claim that there are no structural distinguishers for Simpira with a complexity below 2^128, and analyze its security against a variety of attacks in this setting. The throughput of Simpira is close to the theoretical optimum, namely, the number of AES rounds in the construction. For example, on the Intel Skylake processor, Simpira has throughput below 1 cycle per byte for b≤4 and b=6. For larger permutations, where moving data in memory has a more pronounced effect, Simpira with b=32 (512 byte inputs) evaluates 732 AES rounds, and performs at 824 cycles (1.61 cycles per byte), which is less than 13% off the theoretical optimum. If the data is stored in interleaved buffers, this overhead is reduced to less than 1%. The Simpira family offers an efficient solution when processing wide blocks, larger than 128 bits, is desired
- …