375 research outputs found

    pH Landscapes in a Novel Five-Species Model of Early Dental Biofilm

    Get PDF
    Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours.-grown bacterial biofilms

    Heavy Meson Electromagnetic Mass Differences from QCD

    Full text link
    We compute the electromagnetic mass differences of mesons containing a single heavy quark in terms of measurable data using QCD-based arguments in heavy-quark effective theory. We derive an unsubtracted dispersion relation that shows that the mass differences are calculable in terms of the properties of the lowest-lying physical intermediate states. We then consider the problem in the large-NN limit, where NN is the number of QCD colors. In this limit, we can write a kind of double-dispersion relation for the amplitude required to determine the electromagnetic mass difference. We use this to derive analogs of the Weinberg sum rules for heavy meson matrix elements valid to leading order in 1/N1/N and to O(1/mQ)O(1/m_Q) in the heavy quark expansion. In order to obtain our final result, we assume that the electromagnetic mass differences and sum rules are dominated by the lowest-lying states in analogy with the situation for the π+\pi^+--π0\pi^0 mass difference. Despite the fact that some of the matrix elements appearing in our final result have not yet been accurately measured, we can obtain useful numerical estimates: for example, we obtain (M_{B^+} - M_{B^0})^{EM} \simeq +1.8 \MeV. We argue that our results are accurate to about 30%30\%.Comment: 20 pages, plain TeX, 1 uuencoded postscript figur

    Engineering 3D Multi-Branched Nanostructures for Ultra- Sensing Applications

    Get PDF
    The fabrication of plasmonic nanostructures with sub-10 nm gaps supporting extremely large electric field enhancement (hot-spot) has attained great interest over the past years, especially in ultra-sensing applications. The “hot-spot” concept has been successfully implemented in surface-enhanced Raman spectroscopy (SERS) through the extensive exploitation of localized surface plasmon resonances. However, the detection of analyte molecules at ultra-low concentrations, i.e., down to the single/few molecule level, still remains an open challenge due to the poor localization of analyte molecules onto the hot-spot region. On the other hand, three-dimensional nanostructures with multiple branches have been recently introduced, demonstrating breakthrough performances in hot-spot-mediated ultra-sensitive detection. Multi-branched nanostructures support high hot-spot densities with large electromagnetic (EM) fields at the interparticle separations and sharp edges, and exhibit excellent uniformity and morphological homogeneity, thus allowing for unprecedented reproducibility in the SERS signals. 3D multi-branched nanostructures with various configurations are engineered for high hot-spot density SERS substrates, showing an enhancement factor of 1011 with a low detection limit of 1 fM. In this view, multi-branched nanostructures assume enormous importance in analyte detection at ultra-low concentrations, where the superior hot-spot density can promote the identification of probe molecules with increased contrast and spatial resolution

    Experimental evaluation of the wake characteristics of cross flow turbine arrays

    Get PDF
    One key factor in the exploitation of tidal energy is the study of interactions of turbines when working in tidal turbine farms. The Momentum Reversal and Lift (MRL) turbine is a novel cross flow turbine. The three blades rotate around a common central horizontal axis which is parallel to their own axis and perpendicular to the flow. The novelty of the MRL turbine is that it relies on the combination of both lift and momentum reversal (drag) for energy extraction. Scaled MRL turbine models of 0.164 m in diameter were used to characterise the flow in three different tidal array settings. Detailed maps of axial velocity profiles and velocity deficits downstream of the turbine are presented, enabling the visualisation of characteristic flow patterns. The results show that the MRL generates lower velocity deficits and turbulence intensities in the near wake than those associated with horizontal axis turbines. The downstream wake was not completely symmetrical which was related to the geometry of the device but also due to the flow developed in the flume. Amongst the three array configurations studied, a fence of turbines with the lowest separation provided the highest power output
    • 

    corecore