2,998 research outputs found

    Testing the Persistence of Phenotypic Plasticity After Incubation in the Western Fence Lizard, Sceloporus Occidentalis

    Get PDF
    Hypothesis: Phenotypic variation in traits induced by different incubation temperatures does not persist into the lifetime of young lizards, and therefore contributes little to variation in long-term fitness. Organism: Western fence lizard (Sceloporus occidentalis). Methods: Split-clutch laboratory incubation experiment including eggs from two different populations under two different incubation regimes, measurement of morphological traits at hatching, and tracking of morphology and temperature preference behaviour for 7 weeks after hatching. Results: Several morphological traits, including body mass, hindlimb length, inter-limb length, and tail length, initially differed between the two incubation treatments, but only the difference in tail length persisted to age 7 weeks. Thermal preference was relatively conserved, with juveniles showing no difference in mean selected body temperatures across treatments; however, warm-incubated lizards thermoregulated more precisely than their cool-incubated counterparts. Conclusion: Studies of incubation effects can reveal changes in animal phenotypes post-hatching, but if these effects do not persist, they may not be subject to natural selection and consequently be of little ecological relevance

    Task-dependent plasticity in distributed neural circuits after transcranial direct current stimulation of the human motor cortex: A proof-of-concept study

    Get PDF
    The ability of non-invasive brain stimulation to induce neuroplasticity and cause long-lasting functional changes is of considerable interest for the reversal of chronic pain and disability. Stimulation of the primary motor cortex (M1) has provided some of the most encouraging after-effects for therapeutic purposes, but little is known about its underlying mechanisms. In this study we combined transcranial Direct Current Stimulation (tDCS) and fMRI to measure changes in task-specific activity and interregional functional connectivity between M1 and the whole brain. Using a randomized counterbalanced sham-controlled design, we applied anodal and cathodal tDCS stimulation over the left M1. In agreement with previous studies, we demonstrate that tDCS applied to the target region induces task-specific facilitation of local brain activity after anodal tDCS, with the stimulation effects having a negative relationship to the resting motor threshold. Beyond the local effects, tDCS also induced changes in multiple downstream regions distinct from the motor system that may be important for therapeutic efficacy, including the operculo-insular and cingulate cortex. These results offer opportunities to improve outcomes of tDCS for the individual patient based on the degree of presumed neuroplasticity. Further research is still warranted to address the optimal stimulation targets and parameters for those with disease-specific symptoms of chronic pain

    Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy.

    Get PDF
    Personalized medicine requires that treatments adapt to not only the patient but also changing factors within each individual. Although epilepsy is a dynamic disorder characterized by pathological fluctuations in brain state, surprisingly little is known about whether and how seizures vary in the same patient. We quantitatively compared within-patient seizure network evolutions using intracranial electroencephalographic (iEEG) recordings of over 500 seizures from 31 patients with focal epilepsy (mean 16.5 seizures per patient). In all patients, we found variability in seizure paths through the space of possible network dynamics. Seizures with similar pathways tended to occur closer together in time, and a simple model suggested that seizure pathways change on circadian and/or slower timescales in the majority of patients. These temporal relationships occurred independent of whether the patient underwent antiepileptic medication reduction. Our results suggest that various modulatory processes, operating at different timescales, shape within-patient seizure evolutions, leading to variable seizure pathways that may require tailored treatment approaches

    Operculo-Insular and Anterior Cingulate Plasticity Induced by Transcranial Magnetic Stimulation in the Human Motor Cortex: A Dynamic Casual Modelling Study

    Get PDF
    The ability to induce neuroplasticity with non-invasive brain stimulation techniques offers a unique opportunity to examine the human brain systems involved in pain modulation. In experimental and clinical settings, the primary motor cortex (M1) is commonly targeted to alleviate pain, but its mechanism of action remains unclear. Using dynamic causal modelling (DCM) and Bayesian model selection (BMS), we tested seven competing hypotheses about how TMS modulates the directed influences (or effective connectivity) between M1 and three distinct cortical areas of the medial and lateral pain systems, including the insular (INS), anterior cingulate cortex (ACC), and parietal operculum (PO). The dataset included a novel fMRI acquisition collected synchronously with M1 stimulation during rest and while performing a simple hand motor task. DCM and BMS showed a clear preference for the fully connected model in which all cortical areas receive input directly from M1, with facilitation of the connections INS®M1, PO®M1, and ACC®M1, plus increased inhibition of their reciprocal connections. An additional DCM analysis comparing the reduced models only corresponding to networks with a sparser connectivity within the full model, showed that M1 input into the INS is the second-best model of plasticity following TMS manipulations. The results reported here provide a starting point forinvestigating whether pathway-specific targeting involving M1«INS improves analgesic response beyond conventional targeting. We eagerly await future empirical data and models that tests this hypothesis

    Endogenous networks and international cooperation

    Get PDF
    The rise of social network analyses in the social sciences has allowed empirical work to better account for interdependencies among actors and among their actions. However, this work has been, to a large extent, descriptive: it has treated these actions as exogenous and immutable. In many cases these networks describe actions like alliance formation or trade phenomena that are the outcome variables for programs of social scientific research. In this paper, I attempt to account for both interdependencies and the endogenous nature of networks by incorporating formal theory; helping answer the question of how these networks arise by looking at the incentives of actors to form links with each other. I discuss the appropriate solution concept for a network formation game, and present an algorithm for finding the equilibrium of these networks computationally as well as ways to compare the theoretical networks to observed ones in order to evaluate the fit of the theory. I apply these methods to the study of international cooperation a subject where both the interdependencies and purposive nature of actors must be accounted for. The theoretical network is able to reproduce a number of important observed characteristics. Still, there are more factors that must be accounted for if we want to understand how the network of international cooperation is formed

    Lithium-6: A Probe of the Early Universe

    Get PDF
    I consider the synthesis of 6Li due to the decay of relic particles, such as gravitinos or moduli, after the epoch of Big Bang Nucleosynthesis. The synthesized 6Li/H ratio may be compared to 6Li/H in metal-poor stars which, in the absence of stellar depletion of 6Li, yields significantly stronger constraints on relic particle densities than the usual consideration of overproduction of 3He. Production of 6Li during such an era of non-thermal nucleosynthesis may also be regarded as a possible explanation for the relatively high 6Li/H ratios observed in metal-poor halo stars.Comment: final version, Physical Review Letters, additional figure giving limits on relic decaying particle

    A Study of the Quasi-elastic (e,e'p) Reaction on 12^{12}C, 56^{56}Fe and 97^{97}Au

    Full text link
    We report the results from a systematic study of the quasi-elastic (e,e'p) reaction on 12^{12}C, 56^{56}Fe and 197^{197}Au performed at Jefferson Lab. We have measured nuclear transparency and extracted spectral functions (corrected for radiation) over a Q2^2 range of 0.64 - 3.25 (GeV/c)2^2 for all three nuclei. In addition we have extracted separated longitudinal and transverse spectral functions at Q2^2 of 0.64 and 1.8 (GeV/c)2^2 for these three nuclei (except for 197^{197}Au at the higher Q2^2). The spectral functions are compared to a number of theoretical calculations. The measured spectral functions differ in detail but not in overall shape from most of the theoretical models. In all three targets the measured spectral functions show considerable excess transverse strength at Q2^2 = 0.64 (GeV/c)2^2, which is much reduced at 1.8 (GeV/c)2^2.Comment: For JLab E91013 Collaboration, 19 pages, 20 figures, 3 table

    Radiative decay of a massive particle and the non-thermal process in primordial nucleosynthesis

    Get PDF
    We consider the effects on big bang nucleosynthesis (BBN) of the radiative decay of a long-lived massive particle. If high-energy photons are emitted after the BBN epoch (t1103t \sim 1 - 10^3 sec), they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between standard BBN and observation. Taking into account recent observational and theoretical developments in this field, we revise our previous study constraining the abundance of the radiatively-decaying particles. In particular, on the theoretical side, it was recently claimed that the non-thermal production of 6^6Li, which is caused by the photodissociation of \hefour, most severely constrains the abundance of the radiatively-decaying particle. We will see, however, it is premature to emphasize the importance of the non-thermal production of 6^6Li because (i) the theoretical computation of the 6^6Li abundance has large uncertainty due to the lack of the precise understanding of the 6^6Li production cross section, and (ii) the observational data of 6^6Li abundance has large errors.Comment: 15 pages, using REVTeX and 3 postscript figure
    corecore