796 research outputs found
Lithium abundances from the 6104A line in cool Pleiades stars
Lithium abundances determined by spectral synthesis from both the 6708A
resonance line and the 6104 subordinate line are reported for 11 late-type
Pleiades stars, including spectra previously analysed by Russell (1996). We
report a 0.7 dex scatter in the abundances from 6708A, and a scatter at least
as large from the 6104A line. We find a reasonable correllation between the
6104A and 6708A Li abundances, although four stars have 6104A-determined
abundances which are significantly larger than the 6708-determined values, by
up to 0.5 dex, suggesting problems with the homogeneous, one-dimensional
atmospheres being used. We show that these discrepancies can be explained,
although probably not uniquely, by the presence of star spots with plausible
coverage fractions. The addition of spots does not significantly reduce the
apparent scatter in Li abundances, leaving open the possibility that at least
some of the spread is caused by real star-to-star differences in pre-main-
sequence Li depletion.Comment: 13 pages, 7 figures; Accepted by A&A 17/05/0
Solvent contribution to the stability of a physical gel characterized by quasi-elastic neutron scattering
The dynamics of a physical gel, namely the Low Molecular Mass Organic Gelator
{\textit Methyl-4,6-O-benzylidene- -D-mannopyranoside (-manno)}
in water and toluene are probed by neutron scattering. Using high gelator
concentrations, we were able to determine, on a timescale from a few ps to 1
ns, the number of solvent molecules that are immobilised by the rigid network
formed by the gelators. We found that only few toluene molecules per gelator
participate to the network which is formed by hydrogen bonding between the
gelators' sugar moieties. In water, however, the interactions leading to the
gel formations are weaker, involving dipolar, hydrophobic or
interactions and hydrogen bonds are formed between the gelators and the
surrounding water. Therefore, around 10 to 14 water molecules per gelator are
immobilised by the presence of the network. This study shows that neutron
scattering can give valuable information about the behaviour of solvent
confined in a molecular gel.Comment: Langmuir (2015
Secondary magnetic inclusions in detrital zircons from the Jack Hills, Western Australia, and implications for the origin of the geodynamo
The time of origin of Earth’s dynamo is unknown. Detrital zircon crystals containing ferromagnetic inclusions from the Jack Hills of Western Australia have the potential to contain the oldest records of the geodynamo. It has recently been argued that magnetization in these zircons indicates that an active dynamo existed as far back as 4.2 Ga. However, the ages of ferromagnetic inclusions in the zircons are unknown. Here we present the first detailed characterization of the mineralogy and spatial distribution of ferromagnetic minerals in Jack Hills detrital zircons. We demonstrate that ferromagnetic minerals in most Jack Hills zircons are commonly located in cracks and on the zircons’ exteriors. Hematite is observed to dominate the magnetization of many zircons, while other zircons also contain significant quantities of magnetite and goethite. This indicates that the magnetization of most zircons is likely to be dominantly carried by secondary minerals that could be hundreds of millions to billions of years younger than the zircons’ crystallization ages. We conclude that the existence of the geodynamo prior to 3.5 Ga has yet to be established
Discovery of a weak magnetic field in the photosphere of the single giant Pollux
Aims: We observe the nearby, weakly-active single giant, Pollux, in order to
directly study and infer the nature of its magnetic field. Methods: We used the
new generation spectropolarimeters ESPaDOnS and NARVAL to observe and detect
circular polarization within the photospheric absorption lines of Pollux. Our
observations span 18 months from 2007-2009. We treated the spectropolarimetric
data using the Least-Squares Deconvolution method to create high
signal-to-noise ratio mean Stokes V profiles. We also measured the classical
activity indicator S-index for the Ca H&K lines, and the stellar radial
velocity (RV). Results: We have unambiguously detected a weak Stokes V signal
in the spectral lines of Pollux, and measured the related surface-averaged
longitudinal magnetic field Bl. The longitudinal field averaged over the span
of the observations is below one gauss. Our data suggest variations of the
longitudinal magnetic field, but no significant variation of the S-index. We
observe variations of RV which are qualitatively consistent with the published
ephemeris for a proposed exoplanet orbiting Pollux. The observed variations of
Bl appear to mimic those of RV, but additional data for this relationship to be
established. Using evolutionary models including the effects of rotation, we
derive the mass of Pollux and we discuss its evolutionary status and the origin
of its magnetic field. Conclusions: This work presents the first direct
detection of the magnetic field of Pollux, and demonstrates that ESPaDOnS and
NARVAL are capable of obtaining sub-G measurements of the surface-averaged
longitudinal magnetic field of giant stars, and of directly studying the
relationships between magnetic activity, stellar evolution and planet hosting
of these stars.Comment: 8 pages, 6 figures, accepted for publication in Astronomy and
Astrophysic
Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers
We study frequency dependent (FD) input-output schemes for signal-recycling
interferometers, the baseline design of Advanced LIGO and the current
configuration of GEO 600. Complementary to a recent proposal by Harms et al. to
use FD input squeezing and ordinary homodyne detection, we explore a scheme
which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are
sub-optimal among all possible input-output schemes, provide a global noise
suppression by the power squeeze factor, while being realizable by using
detuned Fabry-Perot cavities as input/output filters. At high frequencies, the
two schemes are shown to be equivalent, while at low frequencies our scheme
gives better performance than that of Harms et al., and is nearly fully
optimal. We then study the sensitivity improvement achievable by these schemes
in Advanced LIGO era (with 30-m filter cavities and current estimates of
filter-mirror losses and thermal noise), for neutron star binary inspirals, and
for narrowband GW sources such as low-mass X-ray binaries and known radio
pulsars. Optical losses are shown to be a major obstacle for the actual
implementation of these techniques in Advanced LIGO. On time scales of
third-generation interferometers, like EURO/LIGO-III (~2012), with
kilometer-scale filter cavities, a signal-recycling interferometer with the FD
readout scheme explored in this paper can have performances comparable to
existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
Quantum state preparation and macroscopic entanglement in gravitational-wave detectors
Long-baseline laser-interferometer gravitational-wave detectors are operating
at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within
a broad frequency band. Such a low classical noise budget has already allowed
the creation of a controlled 2.7 kg macroscopic oscillator with an effective
eigenfrequency of 150 Hz and an occupation number of 200. This result, along
with the prospect for further improvements, heralds the new possibility of
experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical
behavior of objects in the realm of everyday experience - using
gravitational-wave detectors. In this paper, we provide the mathematical
foundation for the first step of a MQM experiment: the preparation of a
macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum
state, which is possible if the interferometer's classical noise beats the SQL
in a broad frequency band. Our formalism, based on Wiener filtering, allows a
straightforward conversion from the classical noise budget of a laser
interferometer, in terms of noise spectra, into the strategy for quantum state
preparation, and the quality of the prepared state. Using this formalism, we
consider how Gaussian entanglement can be built among two macroscopic test
masses, and the performance of the planned Advanced LIGO interferometers in
quantum-state preparation
Current challenges in software solutions for mass spectrometry-based quantitative proteomics
This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
Searching for a Stochastic Background of Gravitational Waves with LIGO
The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed
the fourth science run, S4, with significantly improved interferometer
sensitivities with respect to previous runs. Using data acquired during this
science run, we place a limit on the amplitude of a stochastic background of
gravitational waves. For a frequency independent spectrum, the new limit is
. This is currently the most sensitive
result in the frequency range 51-150 Hz, with a factor of 13 improvement over
the previous LIGO result. We discuss complementarity of the new result with
other constraints on a stochastic background of gravitational waves, and we
investigate implications of the new result for different models of this
background.Comment: 37 pages, 16 figure
Search for gravitational wave bursts in LIGO's third science run
We report on a search for gravitational wave bursts in data from the three
LIGO interferometric detectors during their third science run. The search
targets subsecond bursts in the frequency range 100-1100 Hz for which no
waveform model is assumed, and has a sensitivity in terms of the
root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No
gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published
in Classical and Quantum Gravit
- …