23,622 research outputs found

    Improved Pseudofermion Approach for All-Point Propagators

    Get PDF
    Quark propagators with arbitrary sources and sinks can be obtained more efficiently using a pseudofermion method with a mode-shifted action. Mode-shifting solves the problem of critical slowing down (for light quarks) induced by low eigenmodes of the Dirac operator. The method allows the full physical content of every gauge configuration to be extracted, and should be especially helpful for unquenched QCD calculations. The method can be applied for all the conventional quark actions: Wilson, Sheikoleslami-Wohlert, Kogut-Susskind, as well as Ginsparg-Wilson compliant overlap actions. The statistical properties of the method are examined and examples of physical processes under study are presented.Comment: LateX, 26 pages, 10 eps figure

    A Study of Single Pulses in the Parkes Multibeam Pulsar Survey

    Full text link
    We reprocessed the Parkes Multibeam Pulsar Survey, searching for single pulses out to a DM of 5000 pc cm−3^{-3} with widths of up to one second. We recorded single pulses from 264 known pulsars and 14 Rotating Radio Transients. We produced amplitude distributions for each pulsar which we fit with log-normal distributions, power-law tails, and a power-law function divided by an exponential function, finding that some pulsars show a deviation from a log-normal distribution in the form of an excess of high-energy pulses. We found that a function consisting of a power-law divided by an exponential fit the distributions of most pulsars better than either log-normal or power-law functions. For pulsars that were detected in a periodicity search, we computed the ratio of their single-pulse signal-to-noise ratios to their signal-to-noise ratios from a Fourier transform and looked for correlations between this ratio and physical parameters of the pulsars. The only correlation found is the expected relationship between this ratio and the spin period. Fitting log-normal distributions to the amplitudes of pulses from RRATs showed similar behaviour for most RRATs. Here, however, there seem to be two distinct distributions of pulses, with the lower-energy distribution being consistent with noise. Pulse-energy distributions for two of the RRATS processed were consistent with those found for normal pulsars, suggesting that pulsars and RRATs have a common emission mechanism, but other factors influence the specific emission properties of each source class.Comment: 11 pages, 6 figures, 3 tables, accepted for publication in MNRA

    Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals. II Accurate parameter extraction of strong sources using higher-order spin effects

    Full text link
    We improve the numerical kludge waveform model introduced in [1] in two ways. We extend the equations of motion for spinning black hole binaries derived by Saijo et al. [2] using spin-orbit and spin-spin couplings taken from perturbative and post-Newtonian (PN) calculations at the highest order available. We also include first-order conservative self-force corrections for spin-orbit and spin-spin couplings, which are derived by comparison to PN results. We generate the inspiral evolution using fluxes that include the most recent calculations of small body spin corrections, spin-spin and spin-orbit couplings and higher-order fits to solutions of the Teukolsky equation. Using a simplified version of this model in [1], we found that small body spin effects could be measured through gravitational wave observations from intermediate-mass ratio inspirals (IMRIs) with mass ratio eta ~ 0.001, when both binary components are rapidly rotating. In this paper we study in detail how the spin of the small/big body affects parameter measurement using a variety of mass and spin combinations for typical IMRIs sources. We find that for IMRI events of a moderately rotating intermediate mass black hole (IMBH) of ten thousand solar masses, and a rapidly rotating central supermassive black hole (SMBH) of one million solar masses, gravitational wave observations made with LISA at a fixed signal-to-noise ratio (SNR) of 1000 will be able to determine the inspiralling IMBH mass, the central SMBH mass, the SMBH spin magnitude, and the IMBH spin magnitude to within fractional errors of ~0.001, 0.001, 0.0001, and 9%, respectively. LISA can also determine the location of the source in the sky and the SMBH spin orientation to within ~0.0001 steradians. We show that by including conservative corrections up to 2.5PN order, systematic errors no longer dominate over statistical errors for IMRIs with typical SNR ~1000.Comment: 21 pages, 7 figures. v2: three references added, edits in Sections II-V, including additional results in Section V to address comments by the referee. v3: mirrors version accepted to PR

    Cretaceous-to-recent record of elevated 3He/4He along the Hawaiian-Emperor volcanic chain

    Get PDF
    Helium isotopes are a robust geochemical tracer of a primordial mantle component in hot spot volcanism. The high 3He/4He (up to 35 RA, where RA is the atmospheric 3He/4He ratio of 1.39 × 10−6) of some Hawaiian Island volcanism is perhaps the classic example. New results for picrites and basalts from the Hawaiian-Emperor seamount chain indicate that the hot spot has produced high 3He/4He lavas for at least the last 76 million years. Picrites erupted at 76 Ma have 3He/4He (10–14 RA), which is at the lower end of the range for the Hawaiian Islands but still above the range of modern mid-ocean ridge basalt (MORB; 6–10 RA). This was at a time when hot spot volcanism was occurring on thin lithosphere close to a spreading ridge and producing lava compositions otherwise nearly indistinguishable from MORB. After the hot spot and spreading center diverged during the Late Cretaceous, the hot spot produced lavas with significantly higher 3He/4He (up to 24 RA). Although 3He/4He ratios stabilized at relatively high values by 65 Ma, other chemical characteristics such as La/Yb and 87Sr/86Sr did not reach and stabilize at Hawaiian-Island-like values until ~45 Ma. Our limited 3He/4He record for the Hawaiian hot spot shows a poor correlation with plume flux estimates (calculated from bathymetry and residual gravity anomalies [Van Ark and Lin, 2004]). If 3He is a proxy for the quantity of primordial mantle material within the plume, then the lack of correlation between 3He/4He and calculated plume flux suggests that variation in primordial mantle flux is not the primary factor controlling total plume flux

    Crop Yield Prospects for 1960

    Get PDF
    The kind of weather we have often is the deciding factor on crop yields in Iowa. The moisture used by crops comes from two sources-soil reserves and crop-season rainfall. Here\u27s how we stand for the year ahead

    Crop Prospects for 1958

    Get PDF
    Soil moisture conditions have returned to near normal in much of the state. Coupled with known probabilities for rainfall in a given year, it is possibile to forecast general crop prospects for Iowa in 1958
    • …
    corecore