580 research outputs found
Spectrophotometric investigation of DL-tryptophan in the presence of Ni(II) or Co(II) ions
In the present study, synthesis of transition metal complexes of DL-tryptophan with metal precursors such as nickel (II) and cobalt (II) ions in water under refluxing conditions and optimization of the reactions to obtain the composition of complexes in water solutions has been reported. The preparation and structural elucidation of the complexes was undertaken by using physico-chemical, potentiometric titration and spectroscopic methods (UV/Vis, FT-IR and XRD). Comparisons of the spectral measurements of DL-tryptophan with those of the nickel (II) and cobalt (II) complexes are useful in determining the atoms of the ligand that are coordinated to the metal ion. In addition, K (dissociation constant) and ÎG (Gibbs free energy) values were calculated using the Babko and Stanley & Turners methods. Antibacterial and antifungal activities of the complexes were studied screened against bacteria and fungi. The activity data shows that and cobalt complexes of DL-tryptophan are more potent than the DL-tryptophan
Quantitative Analysis of the Molecular Dynamics of P3HT:PCBM Bulk Heterojunction
The optoelectronic properties of blends of conjugated polymers and small molecules are likely to be affected by the molecular dynamics of the active layer components. We study the dynamics of regioregular poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends using molecular dynamics (MD) simulation on time scales up to 50 ns and in a temperature range of 250â360 K. First, we compare the MD results with quasi-elastic neutron-scattering (QENS) measurements. Experiment and simulation give evidence of the vitrification of P3HT upon blending and the plasticization of PCBM by P3HT. Second, we reconstruct the QENS signal based on the independent simulations of the three phases constituting the complex microstructure of such blends. Finally, we found that P3HT chains tend to wrap around PCBM molecules in the amorphous mixture of P3HT and PCBM; this molecular interaction between P3HT and PCBM is likely to be responsible for the observed frustration of P3HT, the plasticization of PCBM, and the partial miscibility of P3HT and PCBM
Recommended from our members
Knowing who likes who: The early developmental basis of coalition understanding
Group biases based on broad category membership appear early in human development. However, like many other primates humans inhabit social worlds also characterised by small groups of social coalitions which are not demarcated by visible signs or social markers. A critical cognitive challenge for a young child is thus how to extract information concerning coalition structure when coalitions are dynamic and may lack stable and outwardly visible cues to membership. Therefore, the ability to decode behavioural cues of affiliations present in everyday social interactions between individuals would have conferred powerful selective advantages during our evolution. This would suggest that such an ability may emerge early in life, however, little research has investigated the developmental origins of such processing. The present paper will review recent empirical research which indicates that in the first 2 years of life infants achieve a host of social-cognitive abilities that make them well adapted to processing coalition-affiliations of others. We suggest that such an approach can be applied to better understand the origins of intergroup attitudes and biases. Copyright © 2010 John Wiley & Sons, Ltd
Attention on Weak Ties in Social and Communication Networks
Granovetter's weak tie theory of social networks is built around two central
hypotheses. The first states that strong social ties carry the large majority
of interaction events; the second maintains that weak social ties, although
less active, are often relevant for the exchange of especially important
information (e.g., about potential new jobs in Granovetter's work). While
several empirical studies have provided support for the first hypothesis, the
second has been the object of far less scrutiny. A possible reason is that it
involves notions relative to the nature and importance of the information that
are hard to quantify and measure, especially in large scale studies. Here, we
search for empirical validation of both Granovetter's hypotheses. We find clear
empirical support for the first. We also provide empirical evidence and a
quantitative interpretation for the second. We show that attention, measured as
the fraction of interactions devoted to a particular social connection, is high
on weak ties --- possibly reflecting the postulated informational purposes of
such ties --- but also on very strong ties. Data from online social media and
mobile communication reveal network-dependent mixtures of these two effects on
the basis of a platform's typical usage. Our results establish a clear
relationships between attention, importance, and strength of social links, and
could lead to improved algorithms to prioritize social media content
The aetiology of social deficits within mental health disorders:The role of the immune system and endogenous opioids
The American National Institute for Mental Health (NIMH) has put out a set of research goals that include a long-term plan to identify more reliable endogenous explanations for a wide variety of mental health disorders (Insel, 2013). In response to this, we have identified a major symptom that underlies multiple mental health disorders â social bonding dysfunction. We suggest that endogenous opioid abnormalities can lead to altered social bonding, which is a symptom of various mental health disorders, including depression, schizophrenia and ASD. This article first outlines how endogenous opioids play a role in social bonding. Then we show their association with the bodyâs inflammation immune function, and review recent literature linking inflammation to mental health âimmunophenotypesâ. We finish by explaining how these immunophenotypes may be caused by alterations in the endogenous opioid system. This is the first overview of the role of inflammation across multiple disorders where we provide a biochemical explanation for why immunophenotypes might exist across diagnoses. We propose a novel mechanism of how the immune system may be causing âsickness-typeâ behaviours (fatigue, appetite change, social withdrawal and inhibited motivation) in those who have these immunophenotypes. We hope that this novel aetiology can be used as a basis for future research in mental health
Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling
Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptorâtarget of rapamycin (InRâTOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InRâTOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InRâTOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InRâTOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling
Synchrony as an adaptive mechanism for large-scale human social bonding
Humans have developed a number of specific mechanisms that allow us to maintain much larger social networks than would be expected given our brain size. For our primate cousins, social bonding is primarily supported using grooming, and the bonding effect this produces is primarily mechanistically underpinned by the release of endorphins (although other neurohormones are also likely to be involved). Given large group sizes and time budgeting constraints, grooming is not viable as the primary social bonding mechanism in humans. Instead, during our evolutionary history, we developed other behaviours that helped us to feel connected to our social communities. Here we propose that synchrony might act as direct means to encourage group cohesion by causing the release of neurohormones that influence social bonding. By acting on ancient neurochemical bonding mechanisms, synchrony can act as a primal and direct social bonding agent, and this might explain its recurrence throughout diverse human cultures and contexts (e.g. dance, prayer, marching, music-making). Recent evidence supports the theory that endorphins are released during synchronised human activities, including sport, but particularly during musical interaction. Thus synchrony-based activities are likely to have developed due to the fact that they allow the release of these hormones in large-scale human communities, providing an alternative to social bonding mechanisms such as grooming.This work was funded by European Research Council Advanced Investigator Grant No. 295663 awarded to RD
Radiocarbon constraint on relict organic carbon contributions to Ross Sea sediments
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q04012, doi:10.1029/2005GC001097.We estimate the relative contribution of relict organic matter to the acid-insoluble organic carbon
(AIOC) fraction of surface sediments from Ross Sea, Antarctica, on the basis of 14C abundance. The bulk
isotopic characteristics of AIOC can largely be explained by simple two-source models of modern and
relict organic carbon, when samples are grouped according to two geographical regions, namely,
southwestern and south central Ross Sea. This spatial variability in relict organic carbon could be
controlled by proximity to the edge of the Ross Ice Shelf and ice drainage areas. Radiocarbon abundance in
the AIOC is potentially an excellent tool to estimate the contribution of relict organic carbon in the
Antarctic margin sediments.This work was partly supported by a grant from Japan Society
for the Promotion of Science to N.O
- âŠ