998 research outputs found
Carbon nanotubes–Fe–Alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-Pressed composites
Carbon nanotubes-Fe-Al2O3 massive composites have been prepared by hot-pressing the corresponding composite powders, in which the carbon nanotubes are arranged in bundles smaller than 100 nm in diameter and several tens of micrometers long, forming a web-like network around the Fe-Al2O3 grains. In the powders, the quantity and the quality of the carbon nanotubes both depend on the Fe content (2, 5, 10, 15 and 20 wt%) and on the reduction temperature (900 or 1000°C) used for the preparation. Bundles of carbon nanotubes are present in the hot-pressed materials but with a decrease in quantity in comparison to the powders. This phenomenon appear to be less pronounced for the powders containing higher-quality carbon, i. e. a higher proportion of nanotubes with respect to the total carbon content. The presence of carbon as nanotubes and others species (Fe carbides, thick and short tubes, graphene layers) in the powders modifies the microstructure of the hot-pressed specimens in comparison to that of similar carbon-free nanocomposites : the densifications are lower, the matrix grains and the intergranular metal particles are smaller. The fracture strength of most carbon nanotubes-Fe-Al2O3 composites is only marginally higher than that of Al2O3 and are generally markedly lower than those of the carbon-free Fe-Al2O3 composites. The fracture toughness values are lower than or similar to that of Al2O3. However, SEM observations of composite fractures indicate that the nanotubes bundles, which are very flexible, could dissipate some fracture energy
Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders
Oxides based on a-alumina and containing various amounts of Fe (2, 5, 10, 15 and 20 cat.%) were prepared by decomposition and calcination of the corresponding mixed-oxalates. Selective reduction of the oxides in a H2-CH4 atmosphere produces nanometric Fe particles which are active for the in-situ nucleation and growth of carbon nanotubes. These form bundles smaller than 100 nm in diameter and several tens of micrometers long. However, the carbon nanotubes-Fe-Al2O3 nanocomposite powders may also contain Fe carbide nanoparticles as well as undesirable thick, short carbon tubes and thick graphene layers covering the Fe/Fe carbide nanoparticles. The influence of the Fe content and the reduction temperature on the composition and micro/nanostructure of the nanocomposite powders have been investigated with the aim of improving both the quantity of nanotubes and the quality of carbon, i. e. a smaller average tube diameter and/or more carbon in tubular form. A higher quantity of carbon nanotubes is obtained using a-Al1.8Fe0.2O3 as starting compound, i. e. the maximum Fe concentration (10 cat.%) allowing to retain the monophase solid solution. A further increase in Fe content provokes a phase partitioning and the formation of a Fe2O3-rich phase which upon reduction produces too large Fe particles. The best carbon quality is obtained with only 5 cat.% Fe (a-Al1.9Fe0.1O3), probably because the surface Fe nanoparticles formed upon reduction are a bit smaller than those formed from a-Al1.8Fe0.2O3, thereby allowing the formation of carbon nanotubes of a smaller diameter. For a given Fe content (≤ 10 cat.%), increasing the reduction temperature favours the quantity of nanotubes because of a higher CH4 sursaturation level in the gas atmosphere, but also provokes a decrease in carbon quality
The Evolution of Travelling Waves in a KPP Reaction-Diffusion Model with Cut-off Reaction Rate. I. Permanent Form Travelling Waves
We consider Kolmogorov--Petrovskii--Piscounov (KPP) type models in the
presence of a discontinuous cut-off in reaction rate at concentration .
In Part I we examine permanent form travelling wave solutions (a companion
paper, Part II, is devoted to their evolution in the large time limit). For
each fixed cut-off value , we prove the existence of a unique
permanent form travelling wave with a continuous and monotone decreasing
propagation speed . We extend previous asymptotic results in the
limit of small and present new asymptotic results in the limit of large
which are respectively obtained via the systematic use of matched and
regular asymptotic expansions. The asymptotic results are confirmed against
numerical results obtained for the particular case of a cut-off Fisher reaction
function
Developing an infrastructure for secure patient summary exchange in the EU context: Lessons learned from the KONFIDO project
Background: The increase of healthcare digitalization comes along with potential information security risks. Thus, the EU H2020 KONFIDO project aimed to provide a toolkit supporting secure cross-border health data exchange. Methods: KONFIDO focused on the so-called “User Goals”, while also identifying barriers and facilitators regarding eHealth acceptance. Key user scenarios were elaborated both in terms of threat analysis and legal challenges. Moreover, KONFIDO developed a toolkit aiming to enhance the security of OpenNCP, the reference implementation framework. Results: The main project outcomes are highlighted and the “Lessons Learned,” the technical challenges and the EU context are detailed. Conclusions: The main “Lessons Learned” are summarized and a set of recommendations is provided, presenting the position of the KONFIDO consortium toward a robust EU-wide health data exchange infrastructure. To this end, the lack of infrastructure and technical capacity is highlighted, legal and policy challenges are identified and the need to focus on usability and semantic interoperability is emphasized. Regarding technical issues, an emphasis on transparent and standards-based development processes is recommended, especially for landmark software projects. Finally, promoting mentality change and knowledge dissemination is also identified as key step toward the development of secure cross-border health data exchange services
Interactions between Magnetic Nanowires and Living Cells : Uptake, Toxicity and Degradation
We report on the uptake, toxicity and degradation of magnetic nanowires by
NIH/3T3 mouse fibroblasts. Magnetic nanowires of diameters 200 nm and lengths
comprised between 1 {\mu}m and 40 {\mu}m are fabricated by controlled assembly
of iron oxide ({\gamma}-Fe2O3) nanoparticles. Using optical and electron
microscopy, we show that after 24 h incubation the wires are internalized by
the cells and located either in membrane-bound compartments or dispersed in the
cytosol. Using fluorescence microscopy, the membrane-bound compartments were
identified as late endosomal/lysosomal endosomes labeled with lysosomal
associated membrane protein (Lamp1). Toxicity assays evaluating the
mitochondrial activity, cell proliferation and production of reactive oxygen
species show that the wires do not display acute short-term (< 100 h) toxicity
towards the cells. Interestingly, the cells are able to degrade the wires and
to transform them into smaller aggregates, even in short time periods (days).
This degradation is likely to occur as a consequence of the internal structure
of the wires, which is that of a non-covalently bound aggregate. We anticipate
that this degradation should prevent long-term asbestos-like toxicity effects
related to high aspect ratio morphologies and that these wires represent a
promising class of nanomaterials for cell manipulation and microrheology.Comment: 21 pages 12 figure
Contribution of the Long Noncoding RNA H19 to β-Cell Mass Expansion in Neonatal and Adult Rodents.
Pancreatic β-cell expansion throughout the neonatal period is essential to generate the appropriate mass of insulin-secreting cells required to maintain blood glucose homeostasis later in life. Hence, defects in this process can predispose to diabetes development during adulthood. Global profiling of transcripts in pancreatic islets of newborn and adult rats revealed that the transcription factor E2F1 controls expression of the long noncoding RNA H19, which is profoundly downregulated during the postnatal period. H19 silencing decreased β-cell expansion in newborns, whereas its re-expression promoted proliferation of β-cells in adults via a mechanism involving the microRNA let-7 and the activation of Akt. The offspring of rats fed a low-protein diet during gestation and lactation display a small β-cell mass and an increased risk of developing diabetes during adulthood. We found that the islets of newborn rats born to dams fed a low-protein diet express lower levels of H19 than those born to dams that did not eat a low-protein diet. Moreover, we observed that H19 expression increases in islets of obese mice under conditions of increased insulin demand. Our data suggest that the long noncoding RNA H19 plays an important role in postnatal β-cell mass expansion in rats and contributes to the mechanisms compensating for insulin resistance in obesity
Inventory and review of the Mio–Pleistocene São Jorge flora (Madeira Island, Portugal): palaeoecological and biogeographical implications
The occurrence of plant fossils on Madeira Island has been known since the mid-nineteenth century. Charles Lyell and
George Hartung discovered a leaf bed rich in Lauraceae and fern fossils at S~ao Jorge in 1854. The determinations were
controversial but a full review was never performed. Here we propose possible geological settings for the fossiliferous
outcrop, and present an inventory and a systematic review of the surviving specimens of the S~ao Jorge macroflora. The S~ao
Jorge leaf bed no longer outcrops due to a landslide in 1865. It was possible to establish the two alternative volcano stratigraphical settings in the sedimentary intercalations from the Middle Volcanic Complex, ranging in age from 7 to
1.8 Ma. The descriptions of Heer (1857), Bunbury (1859) and Hartung & Mayer (1864) are reviewed based on 82
surviving specimens. From the initial 37 taxa, we recognize only 20: Osmunda sp., Pteridium aquilinum, Asplenium cf.
onopteris, aff. Asplenium, cf. Polystichum, cf. Davallia, Woodwardia radicans, Filicopsida gen. et sp. indet. 1 and 2,
Ocotea foetens, Salix sp., Erica arborea, cf. Vaccinium, Rubus sp, cf. Myrtus, Magnoliopsida gen. et sp. indet. 1 to 3,
Liliopsida gen. et sp. indet. 1. Magnoliopsida gen. et sp. indet. 4 is based on one previously undescribed flower or fruit.
The floristic composition of the S~ao Jorge fossils resembles the current floristic association of temperate stink laurel
(Ocotea foetens) forest, suggesting a warm and humid palaeoclimate and indicating that laurel forests were present in
Macaronesia at least since the Gelasian, a time when the palaeotropical geofloral elements were almost extinct in Europe.info:eu-repo/semantics/publishedVersio
Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows
Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas
- …