12 research outputs found
The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars
We present 294 pulsars found in GeV data from the Large Area Telescope (LAT)
on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs)
discovered in deep radio searches of LAT sources will likely reveal pulsations
once phase-connected rotation ephemerides are achieved. A further dozen optical
and/or X-ray binary systems co-located with LAT sources also likely harbor
gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and
candidates, 10% of all known pulsars, compared to known before Fermi.
Half of the gamma-ray pulsars are young. Of these, the half that are undetected
in radio have a broader Galactic latitude distribution than the young
radio-loud pulsars. The others are MSPs, with 6 undetected in radio. Overall,
>235 are bright enough above 50 MeV to fit the pulse profile, the energy
spectrum, or both. For the common two-peaked profiles, the gamma-ray peak
closest to the magnetic pole crossing generally has a softer spectrum. The
spectral energy distributions tend to narrow as the spindown power
decreases to its observed minimum near erg s, approaching the
shape for synchrotron radiation from monoenergetic electrons. We calculate
gamma-ray luminosities when distances are available. Our all-sky gamma-ray
sensitivity map is useful for population syntheses. The electronic catalog
version provides gamma-ray pulsar ephemerides, properties and fit results to
guide and be compared with modeling results.Comment: 142 pages. Accepted by the Astrophysical Journal Supplemen
Gamma-ray and radio properties of six pulsars detected by the fermi large area telescope
We report the detection of pulsed γ-rays for PSRs J0631+1036, J0659+1414, J0742-2822, J1420-6048, J1509-5850, and J1718-3825 using the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (formerly known as GLAST). Although these six pulsars are diverse in terms of their spin parameters, they share an important feature: their γ-ray light curves are (at least given the current count statistics) single peaked. For two pulsars, there are hints for a double-peaked structure in the light curves. The shapes of the observed light curves of this group of pulsars are discussed in the light of models for which the emission originates from high up in the magnetosphere. The observed phases of the γ-ray light curves are, in general, consistent with those predicted by high-altitude models, although we speculate that the γ-ray emission of PSR J0659+1414, possibly featuring the softest spectrum of all Fermi pulsars coupled with a very low efficiency, arises from relatively low down in the magnetosphere. High-quality radio polarization data are available showing that all but one have a high degree of linear polarization. This allows us to place some constraints on the viewing geometry and aids the comparison of the γ-ray light curves with high-energy beam models
Detection of High-Energy Gamma-Ray Emission from the Globular Cluster 47 Tucanae with Fermi
Gamma-Ray Pulsar Bonanza
Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by
Halpern
). Using the Fermi Gamma-Ray Space Telescope,
Abdo
et al.
(p.
840
, published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study,
Abdo
et al.
(p.
845
) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study,
Abdo
et al.
(p.
848
, published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star
A Population of Gamma-Ray Millisecond Pulsars Seen with the Fermi Large Area Telescope
Gamma-Ray Pulsar Bonanza
Most of the pulsars we know about were detected through their radio emission; a few are known to pulse gamma rays but were first detected at other wavelengths (see the Perspective by
Halpern
). Using the Fermi Gamma-Ray Space Telescope,
Abdo
et al.
(p.
840
, published online 2 July; see the cover) report the detection of 16 previously unknown pulsars based on their gamma-ray emission alone. Thirteen of these coincide with previously unidentified gamma-ray sources, solving the 30-year-old mystery of their identities. Pulsars are fast-rotating neutron stars. With time they slow down and cease to radiate; however, if they are in a binary system, they can have their spin rates increased by mass transfer from their companion stars, starting a new life as millisecond pulsars. In another study,
Abdo
et al.
(p.
845
) report the detection of gamma-ray emission from the globular cluster 47 Tucanae, which is coming from an ensemble of millisecond pulsars in the cluster's core. The data imply that there are up to 60 millisecond pulsars in 47 Tucanae, twice as many as predicted by radio observations. In a further companion study,
Abdo
et al.
(p.
848
, published online 2 July) searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars outside of stellar clusters, finding gamma-ray pulsations for eight of them. Their properties resemble those of other gamma-ray pulsars, suggesting that they share the same basic emission mechanism. Indeed, both sets of pulsars favor emission models in which the gamma rays are produced in the outer magnetosphere of the neutron star
Contribution to the physical human-robot interaction : application to comanipulation of large objects
La robotique collaborative a pour vocation d'assister physiquement l'opérateur dans ses tâches quotidiennes. Les deux partenaires qui composent un tel système possèdent des atouts complémentaires : physique pour le robot versus cognitif pour l'opérateur. Cette combinaison offre ainsi de nouvelles perspectives d'applications, notamment pour la réalisation de tâches non automatisables. Dans cette thèse, nous nous intéressons à une application particulière qui est l'assistance à la manipulation de pièces de grande taille lorsque la tâche à réaliser et l'environnement sont inconnus du robot. La manutention de telles pièces est une activité quotidienne dans de nombreux domaines et dont les caractéristiques en font une problématique à la fois complexe et critique. Nous proposons une stratégie d'assistance pour répondre à la problématique de contrôle simultané des points de saisie du robot et de l'opérateur liée à la manipulation de pièces de grandes dimensions, lorsque la tâche n'est pas connue du robot. Les rôles du robot et de l'opérateur dans la réalisation de la tâche sont distribués en fonction de leurs compétences relatives. Alors que l'opérateur décide du plan d'action et applique la force motrice qui permet de déplacer la pièce, le robot détecte l'intention de mouvement de l'opérateur et bloque les degrés de liberté qui ne correspondent pas au mouvement désiré. De cette façon, l'opérateur n'a pas à contrôler simultanément tous les degrés de liberté de la pièce. Les problématiques scientifiques relatives à l'interaction physique homme-robot abordées dans cette thèse se décomposent en trois grandes parties : la commande pour l'assistance, l'analyse du canal haptique et l'apprentissage lors de l'interaction. La stratégie développée s'appuie sur un formalisme unifié entre la spécification des assistances, la commande du robot et la détection d'intention. Il s'agit d'une approche modulaire qui peut être utilisée quelle que soit la commande bas niveau imposée dans le contrôleur du robot. Nous avons mis en avant son intérêt au travers de tâches différentes réalisées sur deux plateformes robotiques : un bras manipulateur et un robot humanoïde bipède.Collaborative robotics aims at physically assisting humans in their daily tasks.The system comprises two partners with complementary strengths : physical for the robot versus cognitive for the operator. This combination provides new scenarios of application such as the accomplishment of difficult-to-automate tasks. In this thesis, we are interested in assisting the human operator to manipulate bulky parts while the robot has no prior knowledge of the environment and the task. Handling such parts is a daily activity in manyareas which is a complex and critical issue. We propose a new strategy of assistances to tackle the problem of simultaneously controlling both the grasping point of the operator and that of the robot. The task responsibilities for the robot and the operator are allocated according to their relative strengths. While the operator decides the plan and applies the driving force, the robot detects the operator's intention of motion and constrains the degrees of freedom that are useless to perform the intended motion. This way, the operator does not have to control all the degrees of freedom simultaneously. The scientific issues we deal with are split into three main parts : assistive control, haptic channel analysis and learning during the interaction.The strategy is based on a unified framework of the assistances specification, robot control and intention detection. This is a modular approach that can be applied with any low-level robot control architecture. We highlight its interest through manifold tasks completed with two robotics platforms : an industrial arm manipulator and a biped humanoid robot
Controller design of a robotic assistant for the transport of large and fragile objects
International audienceThis paper deals with the design of a robotic assistant for the transport of large and fragile objects. We propose a new collaborative robotic controller that fulfills the main requirements of co-transportation tasks of large and fragile objects: to execute any trajectory in a collaborative mode while minimizing the stress applied on the object by both partners in order to avoid damaging it. This controller prevents the robot from applying torques on the object while maintaining a desired orientation of the object along the transport trajectory in order to follow the operator. An original feature of our approach is to care about torques applied by both partners (not only by operator) during any co-manipulation trajectory execution. It leads to a novel outcome: the minimization of stress applied by both partners on a large and fragile object during its transport on any trajectory. We demonstrate the effectiveness of this approach in a collaborative transportation task
Experimental study on haptic communication of a human in a shared human-robot collaborative task
International audienceWe aim at addressing in this paper the issue of non-verbal communication involved in a human-robot interaction. We first propose a taxonomy of assistance that an operator may expect from a partner during a long object manipulation task. Then, this paper presents a method to detect which kind of robot assistance is needed, thanks to the decoding of haptic cues conveyed by the operator. An experimental study on thirty subjects moving a long object together with a robot that is providing an assistance is introduced. A statistical analysis highlights the relationships between haptic measures and intentions of motion. This analysis shows that wrench measurements constitute an incomplete information to detect the operator's intention of motion
Robot assistance selection for large object manipulation with a human
Conference of 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013 ; Conference Date: 13 October 2013 Through 16 October 2013; Conference Code:102429International audienceIn this paper, we propose a method that allows a human to perform complex manipulation tasks jointly with a robotic partner. To that end, the robot has a library of assistances that it can provide for helping the human partner during a priori unknown collaborative tasks. According to the haptic cues naturally transmitted by the human partner, the robot selects on-line the suitable assistance for the current intended collaborative motion. Based on the naive bayes classifier and the Matthew Correlation Coefficient, the parameters of the decisionmaking are automatically tuned. An experiment on a real arm manipulator is provided to validate the proposed approach
Design of an Industrial Human-Robot System Through Participative Simulations – Tank Cleaning Case Study
International audienc
Human-centered Design of an Interactive Industrial Robot System Through Participative Simulations: Application to a Pyrotechnic Tank Cleaning Workstation
International audience— Industrials are starting to deploy collaborative robots as new solutions to improve workstations. In particular workstations where human operators may get injured because of repetitive tasks, bad postures or heavy loads are targeted. Collaborative robots can also be an alternative to robots which may take up too much floor space with their safeguards or are not flexible and smart enough to handle complex operations. The introduction of such interactive systems on industrial workstations must satisfy the following requirements: ergonomics and safety of the system, quality and performance of operations, and human well-being. We propose a human-centered approach to improve the introduction of collaborative robots in the industry. Several industrial applications are studied within Safran and Airbus Safran Launchers. In this paper, we present the first application of our work on a pyrotechnic tank cleaning workstation. Our approach is illustrated with the design of a solution through several simulation steps involving the workstation's operators. In particular, the current design of a prototype based on a teleoperated robot is introduced