688 research outputs found

    Adsorbate Electric Fields on a Cryogenic Atom Chip

    Full text link
    We investigate the behaviour of electric fields originating from adsorbates deposited on a cryogenic atom chip as it is cooled from room temperature to cryogenic temperature. Using Rydberg electromagnetically induced transparency we measure the field strength versus distance from a 1 mm square of YBCO patterned onto a YSZ chip substrate. We find a localized and stable dipole field at room temperature and attribute it to a saturated layer of chemically adsorbed rubidium atoms on the YBCO. As the chip is cooled towards 83 K we observe a change in sign of the electric field as well as a transition from a localized to a delocalized dipole density. We relate these changes to the onset of physisorption on the chip surface when the van der Waals attraction overcomes the thermal desorption mechanisms. Our findings suggest that, through careful selection of substrate materials, it may be possible to reduce the electric fields caused by atomic adsorption on chips, opening up experiments to controlled Rydberg-surface coupling schemes.Comment: 5 pages, 4 figure

    10 GeV dark matter candidates and cosmic-ray antiprotons

    Full text link
    Recent measurements performed with some direct dark matter detection experiments, e.g. CDMS-II and CoGENT (after DAMA/LIBRA), have unveiled a few events compatible with weakly interacting massive particles. The preferred mass range is around 10 GeV, with a quite large spin-independent cross section of 104310^{-43}-1041cm210^{-41}\,{\rm cm^2}. In this paper, we recall that a light dark matter particle with dominant couplings to quarks should also generate cosmic-ray antiprotons. Taking advantage of recent works constraining the Galactic dark matter mass profile on the one hand and on cosmic-ray propagation on the other hand, we point out that considering a thermal annihilation cross section for such low mass candidates very likely results in an antiproton flux in tension with the current data, which should be taken into account in subsequent studies.Comment: 4 pages, 2 figures. V2: minor changes to match the published versio

    Design of magnetic traps for neutral atoms with vortices in type-II superconducting micro-structures

    Full text link
    We design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean's critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally-conducting wires with transport currents. Various vortex patterns can be obtained by programming different loading-field and transport current sequences. These variable magnetic fields are employed to make versatile trapping potentials.Comment: 11 pages, 14 figure

    Sub-Natural-Linewidth Quantum Interference Features Observed in Photoassociation of a Thermal Gas

    Full text link
    By driving photoassociation transitions we form electronically excited molecules (Na2_2^*) from ultra-cold (50-300 μ\muK) Na atoms. Using a second laser to drive transitions from the excited state to a level in the molecular ground state, we are able to split the photoassociation line and observe features with a width smaller than the natural linewidth of the excited molecular state. The quantum interference which gives rise to this effect is analogous to that which leads to electromagnetically induced transparency in three level atomic Λ\Lambda systems, but here one of the ground states is a pair of free atoms while the other is a bound molecule. The linewidth is limited primarily by the finite temperature of the atoms.Comment: 4 pages, 5 figure

    Reconfigurable self-sufficient traps for ultracold atoms based on a superconducting square

    Full text link
    We report on the trapping of ultracold atoms in the magnetic field formed entirely by persistent supercurrents induced in a thin film type-II superconducting square. The supercurrents are carried by vortices induced in the 2D structure by applying two magnetic field pulses of varying amplitude perpendicular to its surface. This results in a self-sufficient quadrupole trap that does not require any externally applied fields. We investigate the trapping parameters for different supercurrent distributions. Furthermore, to demonstrate possible applications of these types of supercurrent traps we show how a central quadrupole trap can be split into four traps by the use of a bias field.Comment: 5 pages, 7 figure

    Density dependence of the Ionization Avalanche in ultracold Rydberg gases

    Full text link
    We report on the behaviour of the ionization avalanche in an ensemble of ultracold 87Rb atoms coupled to a high lying Rydberg state and investigate extensions to the current model by including the effects of three-body recombination and plasma expansion. To separate the two effects we study the time dependence of the plasma formation at various densities as well as for different nS and nD states. At medium densities and low n we observe the onset of the avalanche as has been reported in other experiments, as well as a subsequent turn-off of the avalanche for longer excitation times, which we associate with plasma expansion. At higher densities and for higher lying Rydberg states we observe a disappearance of the avalanche signature, which we attribute to three-body recombination.Comment: 5 pages, 4 figure

    All-optical generation and photoassociative probing of sodium Bose-Einstein condensates

    Full text link
    We demonsatrate an all optical technique to evaporatively produce sodium Bose-Einstein condensates (BEC). We use a crossed-dipole trap formed from light near 1060 nm, and a simple ramp of the intensity to force evaporation. In addition, we introduce photoassociation as diagnostic of the trap loading process, and show that it can be used to detect the onset of Bose-Einstein condensation. Finally, we demonstrate the straightforward production of multiple traps with condensates using this technique, and that some control over the spinor state of the BEC is achieved by positioning the trap as well.Comment: 8 pages, 10 figure

    The Integrated Polarization of Spiral Galaxy Disks

    Full text link
    We present integrated polarization properties of nearby spiral galaxies at 4.8 GHz, and models for the integrated polarization of spiral galaxy disks as a function of inclination. Spiral galaxies in our sample have observed integrated fractional polarization in the range < 1% to 17.6%. At inclinations less than 50 degrees, the fractional polarization depends mostly on the ratio of random to regular magnetic field strength. At higher inclinations, Faraday depolarization associated with the regular magnetic field becomes more important. The observed degree of polarization is lower (<4%) for more luminous galaxies, in particular those with L_{4.8} > 2 x 10^{21} W/Hz. The polarization angle of the integrated emission is aligned with the apparent minor axis of the disk for galaxies without a bar. In our axially symmetric models, the polarization angle of the integrated emission is independent of wavelength. Simulated distributions of fractional polarization for randomly oriented spiral galaxies at 4.8 GHz and 1.4 GHz are presented. We conclude that polarization measurements, e.g. with the SKA, of unresolved spiral galaxies allow statistical studies of the magnetic field in disk galaxies using large samples in the local universe and at high redshift. As these galaxies behave as idealized background sources without internal Faraday rotation, they can be used to detect large-scale magnetic fields in the intergalactic medium.Comment: 13 pages, 6 figures; Accepted for publication in The Astrophysical Journa

    Microoptical Realization of Arrays of Selectively Addressable Dipole Traps: A Scalable Configuration for Quantum Computation with Atomic Qubits

    Get PDF
    We experimentally demonstrate novel structures for the realisation of registers of atomic qubits: We trap neutral atoms in one and two-dimensional arrays of far-detuned dipole traps obtained by focusing a red-detuned laser beam with a microfabricated array of microlenses. We are able to selectively address individual trap sites due to their large lateral separation of 125 mu m. We initialize and read out different internal states for the individual sites. We also create two interleaved sets of trap arrays with adjustable separation, as required for many proposed implementations of quantum gate operations
    corecore