6 research outputs found

    QGP collective effects and jet transport

    Full text link
    We present numerical simulations of the SU(2) Boltzmann-Vlasov equation including both hard elastic particle collisions and soft interactions mediated by classical Yang-Mills fields. We provide an estimate of the coupling of jets to a hot isotropic plasma, which is independent of infrared cutoffs. In addition, we investigate jet propagation in anisotropic plasmas, as created in heavy-ion collisions. The broadening of jets is found to be stronger along the beam line than in azimuth due to the creation of field configurations with B_t>E_t and E_z>B_z via plasma instabilities.Comment: 4 pages, 5 figures. Presented at the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions: Quark Matter 2008 (QM2008), Jaipur, India, 4-10 Feb 200

    Search for a Ridge Structure Origin with Shower Broadening and Jet Quenching

    Full text link
    We investigate the role of jet and shower parton broadening by the strong colour field in the Δη\Delta\eta-Δϕ\Delta\phi correlation of high pTp_T particles. When anisotropic momentum broadening (Δpz>ΔpT\Delta p_z > \Delta p_T) is given to jet and shower partons in the initial stage, a ridge-like structure is found to appear in the two hadron correlation. The ratio of the peak to the pedestal yield is overestimated.Comment: Talk given at 20th Int. Conf. on Ultra-Relativistic Nucleus-Nucleus Collisions, Jaipur, India, Feb.4-10, 200

    Thermalization and the chromo-Weibel instability

    Get PDF
    Despite the apparent success of ideal hydrodynamics in describing the elliptic flow data which have been produced at Brookhaven National Lab's Relativistic Heavy Ion Collider, one lingering question remains: is the use of ideal hydrodynamics at times t < 1 fm/c justified? In order to justify its use a method for rapidly producing isotropic thermal matter at RHIC energies is required. One of the chief obstacles to early isotropization/thermalization is the rapid longitudinal expansion of the matter during the earliest times after the initial nuclear impact. As a result of this expansion the parton distribution functions become locally anisotropic in momentum space. In contrast to locally isotropic plasmas anisotropic plasmas have a spectrum of soft unstable modes which are characterized by exponential growth of transverse chromo-magnetic/-electric fields at short times. This instability is the QCD analogue of the Weibel instability of QED. Parametrically the chromo-Weibel instability provides the fastest method for generation of soft background fields and dominates the short-time dynamics of the system.Comment: 8 pages, 4 figures, Invited plenary talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    QCD plasma thermalization, collective flow and extraction of shear viscosity

    Full text link
    Fast thermalization and elliptic flow of QCD matter found at the Relativistic Heavy Ion Collider (RHIC) are understood as the consequence of perturbative QCD (pQCD) interactions within a (3+1) dimensional parton cascade. The main contributions stem from pQCD-inspired bremsstrahlung. We extract the shear viscosity to entropy ratio, which is between 0.08 and 0.15.Comment: 8 pages, 5 figures, Plenary talk at 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions (Quark Matter 2008), Jaipur, India, 4-10 Feb. 200

    Exploring Early Parton Momentum Distribution with the Ridge from the Near-Side Jet

    Full text link
    In a central nucleus-nucleus collision at high-energies, medium partons kicked by a near-side jet acquire a momentum along the jet direction and subsequently materialize as the observed ridge particles. They carry direct information on the early parton momentum distribution which can be extracted by using the ridge data for central AuAu collisions at \sqrt{s_{NN}}=200 GeV. The extracted parton momentum distribution has a thermal-like transverse momentum distribution but a non-Gaussian, relatively flat rapidity distribution at mid-rapidity with sharp kinematic boundaries at large rapidities that depend on the transverse momentum.Comment: In Proceedings of 20th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions, Jaipur, India, Feb. 4-10, 200

    From Glasma to Quark Gluon Plasma in heavy ion collisions

    Full text link
    When two sheets of Color Glass Condensate collide in a high energy heavy ion collision, they form matter with very high energy densities called the Glasma. We describe how this matter is formed, its remarkable properties and its relevance for understanding thermalization of the Quark Gluon Plasma in heavy ion collisions. Long range rapidity correlations contained in the near side ridge measured in heavy ion collisions may allow one to directly infer the properties of the Glasma.Comment: Plenary Topical Overview Talk, Quark Matter 2008; 10 pages 8 figure
    corecore