2 research outputs found

    A Least Squares Differential Quadrature Method for a Class of Nonlinear Partial Differential Equations of Fractional Order

    No full text
    In this paper a new method called the least squares differential quadrature method (LSDQM) is introduced as a straightforward and efficient method to compute analytical approximate polynomial solutions for nonlinear partial differential equations with fractional time derivatives. LSDQM is a combination of the differential quadrature method and the least squares method and in this paper it is employed to find approximate solutions for a very general class of nonlinear partial differential equations, wherein the fractional derivatives are described in the Caputo sense. The paper contains a clear, step-by-step presentation of the method and a convergence theorem. In order to emphasize the accuracy of LSDQM we included two test problems previously solved by means of other, well-known methods, and observed that our solutions present not only a smaller error but also a much simpler expression. We also included a problem with no known exact solution and the solutions computed by LSDQM are in good agreement with previous ones

    Least Squares Differential Quadrature Method for the Generalized Bagley–Torvik Fractional Differential Equation

    No full text
    In this paper, the least squares differential quadrature method for computing approximate analytical solutions for the generalized Bagley–Torvik fractional differential equation is presented. This new method is introduced as a straightforward and accurate method, fact proved by the examples included, containing a comparison with previous results obtained by using other methods
    corecore