2 research outputs found

    A search for pair-produced resonances in four-jet final states at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for massive coloured resonances which are pair-produced and decay into two jets is presented. The analysis uses 36.7 fb−1 − 1 of √ s = 13 TeV pp collision data recorded by the ATLAS experiment at the LHC in 2015 and 2016. No significant deviation from the background prediction is observed. Results are interpreted in a SUSY simplified model where the lightest supersymmetric particle is the top squark, ̃ t ~ , which decays promptly into two quarks through R-parity-violating couplings. Top squarks with masses in the range 100 GeV<̃<410 100 GeV < m t ~ < 410 GeV GeV are excluded at 95% confidence level. If the decay is into a b-quark and a light quark, a dedicated selection requiring two b-tags is used to exclude masses in the ranges 100 GeV<̃<470 100 GeV < m t ~ < 470 GeV GeV and 480 GeV<̃<610 480 GeV < m t ~ < 610 GeV GeV . Additional limits are set on the pair-production of massive colour-octet resonances

    Performance of the ATLAS track reconstruction algorithms in dense environments in LHC Run 2

    Full text link
    With the increase in energy of the Large Hadron Collider to a centre-of-mass energy of 13 TeV for Run 2, events with dense environments, such as in the cores of highenergy jets, became a focus for new physics searches as well as measurements of the Standard Model. These environments are characterized by charged-particle separations of the order of the tracking detectors sensor granularity. Basic track quantities are compared between 3.2 fb(-1) of data collected by the ATLAS experiment and simulation of protonproton collisions producing high-transverse-momentum jets at a centre-of-mass energy of 13 TeV. The impact of chargedparticle separations and multiplicities on the track reconstruction performance is discussed. The track reconstruction efficiency in the cores of jets with transverse momenta between 200 and 1600 GeV is quantified using a novel, datadriven, method. The method uses the energy loss, dE/ dx, to identify pixel clusters originating from two charged particles. Of the charged particles creating these clusters, themeasured fraction that fail to be reconstructed is 0.061 +/- 0.006 (stat.) +/- 0.014 (syst.) and 0.093 +/- 0.017 (stat.) +/- 0.021 (syst.) for jet transverse momenta of 200-400GeV and 1400-1600GeV, respectively
    corecore